它利用多天线来抑制信道衰落。 MIMO技术大致可以分为两类:发射/接收分集和空间复用。传统的多天线被用来增加分集度从而克服信道衰落。具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。举例来说,在慢瑞利衰落信道中,使用1根发射天线n根接收天线,发送信号通过n个不同的路径。如果各个天线之间的衰落是独立的,可以获得最大的分集增益为n,平均误差概率可以减小到 ,单天线衰落信道的平均误差概率为 。对于发射分集技术来说,同样是利用多条路径的增益来提高系统的可靠性。在一个具有m根发射天线n根接收天线的系统中,如果天线对之间的路径增益是独立均匀分布的瑞利衰落,可以获得的最大分集增益为mn。智能天线技术也是通过不同的发射天线来发送相同的数据,形成指向某些用户的赋形波束,从而有效的提高天线增益,降低用户间的干扰。广义上来说,智能天线技术也可以算一种天线分集技术。 分集技术主要用来对抗信道衰落。相反,MIMO信道中的衰落特性可以提供额外的信息来增加通信中的自由度(degrees of freedom)。从本质上来讲,如果每对发送接收天线之间的衰落是独立的,那么可以产生多个并行的子信道。如果在这些并行的子信道上传输不同的信息流,可以提供传输数据速率,这被成为空间复用。需要特别指出的是在高SNR的情况下,传输速率是自由度受限的,此时对于m根发射天线n根接收天线,并且天线对之间是独立均匀分布的瑞利衰落的。
智能天线的作用体现在下列方面:
(1)提高频谱利用率。采用智能天线技术代替普通天线,提高小区内频谱复用率,可以在不新建或尽量少建基站的基础上增加系统容量,降低运营成本。
(2)迅速解决稠密市区容量瓶颈。未来的智能天线能允许任一无线信道与任一波束配对,这样就可按需分配信道,保证呼叫阻塞严重的地区获得较多信道资源,等效于增加了此类地区的无线网络容量。
(3)抑制干扰信号。智能天线对来自各个方向的波束进行空间滤波。它通过对各天线元的激励进行调整,优化天线阵列方向图,将零点对准干扰方向,大大提高阵列的输出信干比,改善了系统质量,提高了系统可靠性。
(4)抗衰落。采用智能天线控制接收方向,自适应地构成波束的方向性,可以使得延迟波方向的增益最小,降低信号衰落的影响。智能天线还可用于分集,减少衰落。
(5)实现移动台定位。采用智能天线的基站可以获得接收信号的空间特征矩阵,由此获得信号的功率估值和到达方向。通过此方法,用两个基站就可将用户终端定位到一个较小区域。
(6)最初的智能天线技术主要用于雷达、声呐、军事抗干扰通信,用来完成空间滤波和定位等。随着移动通信的发展及对移动通信电波传播、组网技术、天线理论等方面的研究逐渐深入,现代数字信号处理技术发展迅速,数字信号处理芯片处理能力不断提高,利用数字技术在基带形成天线波束成为可能,提高了天线系统的可靠性与灵活程度。智能天线技术因此用于具有复杂电波传播环境的移动通信。此外,随着移动通信用户数的迅速增长和人们对通话质量要求的不断提高,要求移动通信网在大容量下仍具有较高的话音质量。它使通信资源不再局限于时间域(TDMA)、频率域(FDMA)或码域(CDMA)而拓展到了空间域,属于空分多址(SDMA)体制。
(7)智能天线潜在的性能效益表现在多方面,例如,抗多径衰落、减小时延扩展、支持高数据速率、抑制干扰、减少远近效应、减小中断概率、改善BER(Bit Error Rate)性能、增加系统容量、提高频谱效率、支持灵活有效的越区切换、扩大小区覆盖范围、灵活的小区管理、延长移动台电池寿命、以及维护和运营成本较低等。
(8)FDMA系统采用智能天线技术,与通常的三扇区基站相比,C/I值平均提高约8dB,大大改善了基站覆盖效果;频率复用系数由7改善为4,增加了系统容量。在网络优化时,采用智能天线技术可降低无线掉话率和切换失败率。
(9)TDMA系统采用智能天线技术可提高C/I指标。据研究,用4个30°天线代替传统的120天线,C/I可提高6dB,提高了服务质量。在满足GSM系统C/I比最小的前提下,提高频率复用系数,增加了系统容量。
(10)CDMA系统采用智能天线技术,可进行话务均衡,将高话务扇区的部分话务量转移到容量资源未充分利用的扇区;通过智能天线灵活的辐射模式和定向性,可进行软/硬切换控制;智能天线的空间域滤波可改善远近效应,简化功率控制,降低系统成本,也可减少多址干扰,提高系统性能。
(11)容量和频谱利用率的问题是发展移动通信根本性的问题。智能天线通过空分多址,将基站天线的收发限定在一定的方向角范围内,其实质是分配移动通信系统工作的空间区域,使空间资源之间的交叠最小,干扰最小,合理利用无线资源。
(12)采用智能天线是解决稠密市区容量难题既经济又高效的方案,可在不影响通话质量的情况下,将基站配置成全向连接,大幅度提高基站容量。
采用智能天线技术可提高第三代移动通信系统的容量及服务质量,W-CDMA系统就采用自适应天线阵列技术,增加系统容量。ArrayComm与英国马可尼公司正在合作开发具有自适应阵列天线功能的基站。爱立信宣称将在其W-CDMA基站中提供自适应阵列智能天线。朗讯也曾宣布,其第三代移动通信基站中将采用朗讯自主开发的IA-BLAST智能天线技术。
(13)在第三代移动通信系统中,中国TD-SCDMA系统是应用智能天线技术的典型范例。中国TD-SCDMA系统采用TDD方式,使上下射频信道完全对称,可同时解决诸如天线上下行波束赋形、抗多径干扰和抗多址干扰等问题。该系统具有精确定位功能,可实现接力切换,减少信道资源浪费。
CDMA2000应用智能天线技术也有了进展。CDMA发展组织CDG已经发布了一个关于智能天线的文件——“智能天线在CDMA系统中的业务描述、用户需求和系统功能”,由此开始推动智能天线在CDMA系列技术中的应用。
(14)在移动通信技术的发展中,以自适应阵列天线为代表的智能天线已成为一个最活跃的领域。智能天线技术对移动通信系统所带来的优势是任何技术所难以替代的。智能天线技术已经日益成为移动通信中最具有吸引力的技术之一,并在以后几年内发挥巨大的作用。在第三代移动通信系统中,作为TD-SCDMA系统中的关键技术之一的智能天线技术,能够使系统在高速运动的信道环境中具有较好的性能。国际上已经将智能天线技术作为一个三代以后移动通信技术发展的主要方向之一,一个具有良好应用前景且尚未得到充分开发的新技术,是第三代移动通信系统中不可缺的关键技术之一。
(15)智能天线在DECT、PHS等系统中的应用:DECT、PHS都是基于TDD方式的慢速移动通信系统。欧洲在DECT基站中进行智能天线实验时,采用和评估了多种自适应算法,并验证了智能天线的功能。日本在PHS系统中的测试表明,采用智能天线可减少基站数量。
(16)无线本地环路系统的基站对收到的上行信号进行处理,获得该信号的空间特征矢量,进行上行波束赋形,达到最佳接收效果。天线波束赋形等效于提高天线增益,改善了接收灵敏度和基站发射功率,扩大了通信距离,并在一定程度上减少了多径传播的影响。
(18)在时空信号处理研究方面,对测向算法、自适应算法、盲和非盲算法、谱估计理论和算法、天线流形及数字波束成形、天线校准及控制、动态时空信道分配、容量分析等作了大量分析和仿真,提出了多种新的算法,并在系统上得到了应用。除了基站智能天线,还开展多天线系统(MIMO)、天线抗干扰技术、二维天线阵列智能天线等研究。
(19)对于给定的频谱带宽,系统容量愈大,频谱利用率愈高。因此,增加系统容量与提高频谱效率一致。为了满足移动通信业务的巨大需求,应尽量扩大现有基站容量和覆盖范围。要尽量减少新建网络所需的基站数量,必须通过各种方式提高频谱利用效率。方法之一是采用智能天线技术,用自适应天线代替普通天线。由于天线波束变窄,提高了天线增益及C/I指标,减少了移动通信系统的同频干扰,降低了频率复用系数,提高了频谱利用效率。使用智能天线后,无须增加新的基站就可改善系统覆盖质量,扩大系统容量,增强现有移动通信网络基础设施的性能。
天线的方向图表示的是空间角度与天线增益的关系,对于全向天线来说,它的方向图是一个圆;对于阵列天线,可以通过调整阵列中各个元素的加权参数来形成更具方向性的天线方向图,形成主瓣方向具有较大增益,而其它副瓣方向增益较小的形式。智能天线正是一种能够根据通信的情况,实时地调整阵列天线各元素的参数,形成自适应的方向图的设备。这种方向图通常以最大限度地放大有用信号、抑制干扰信号为目的,例如将大增益的主瓣对准有用信号,而在其它方向的干扰信号上使用小增益的副瓣。
智能天线包括射频天线阵列部分和信号处理部分,其中信号处理部分根据得到的关于通信情况的信息,实时地控制天线阵列的接收和发送特性。这些信息可能是接收到的无线信号的情况;在使用闭环反馈的形式时,也可能是通信对端关于发送信号接收情况的反馈信息。把具有相同极化特性、各向同性及增益相同的天线阵元,按一定的方式排列,构成天线阵列。构成阵列的阵元可按任意方式排列,通常是按直线等距、圆周等距或平面等距排列,其间距通常取工作波长的一半,并且取向相同。智能天线系统由天线阵列部分、阵列形状、模数转换等几部分组成,如图所示。实际智能天线结构比图复杂,因为图中表示的是单个用户情况,假如在一个小区中有K个用户,则图1中仅天线阵列和模数转换部分可以共用,其余自适应数字信号处理器与相应的波束形成网络需要每个用户一套,共K套。以形成K个自适应波束跟踪K个用户。被跟踪的用户为期望用户,剩下的K- 1 个用户均为干扰用户。智能天线可以按通信的需要在有用信号的方向提高增益,在干扰源的方向降低增益.因此,智能天线系统的应用可以带来如下好处:提高系统容量、减小衰减、抗干扰能力较强、实现移动台定位、增强网络管理能力等。
关键词:为什么智能天线技术能够抗衰落?