基因测序的方法很多。
最早是用sanger测序法,原理是双脱氧链终止法;
Sanger法是根据核苷酸在某一固定的点开始,随机在某一个特定的碱基处终止,并且在每个碱基后面进行荧光标记,产生以A、T、C、G结束的四组不同长度的一系列核苷酸,然后在尿素变性的PAGE胶上电泳进行检测,从而获得可见的DNA碱基序列。
第二代测序法的原理是“边合成边测序”;
第二代测序法是以待测序列为模板,按照碱基互补配对原则进行合成,每新加一个碱基就进行一次扫描,读出这个碱基,最终获得完整的DNA序列。
第三代测序法的原理是“单分子测序”
与第二代相比,第三代不需要合成,即拿来原始的待测DNA,直接读出碱基顺序,第三代测序方法有多种,但依照的原则都是“单分子测序”。
全基因组测序是指对全部基因组完整测序 是决定一套完整染色体基因组上核苷酸碱基准确顺序组成的过程 基因组测序是一项庞大的工程 其中三个必需关键技术是DNA大片段的克隆 测序的自动化和用生物信息学处理数据 当一个基因组完成测序之后 应该对其进行注释 全基因组测序主要应用于癌症
通常采用Fleischman等人在测定流感嗜血杆菌基因组中建立的 鸟枪随机测序法 而后再将测序结果进行整合
1.建立随机DNA文库
通过喷雾器进行机械剪切或使用超声波处理纯度高 完整性好的基因组DNA 制备随机片段 然后将随机片段插入到适宜的测序载体中 随机DNA文库建立后 对文库的随机质量和容量进行鉴定
2.高通量测序
最大限度地从文库中随机挑取克隆制备测序模板 并使用多台自动化测序仪进行高通量测序
3.随机片段的组装
将测序结果输入计算机 使用软件根据重叠序列将随机片段组装起来以还原整个基因组序列
4.缺口的补平
由于使用的是随机片段 因此在组装过程中可能出现物理缺口 对于这种情况 可以根据缺口两边的序列设计引物 以完整的DNA为模板进行PCR扩增 得到缺失部分的序列
PCR产物直接测序技术现已成为分子生物学和基因组学研究中的一个重要技术,广泛用于基因突变检测、遗传性疾病诊断、单核苷酸多态性研究、基因组重叠序列群等.与传统克隆测序技术相比较,直接对PCR扩增的DNA进行测序,省去了耗时的克隆步骤,避免了传统的细菌培养,模板提取等重复性操作,可以从少量的原始样品中得到正确的DNA序列信息.PCR产物直接测序技术具有快速、简便、稳定经济的优点.
试验试剂
PCR扩增的双链DNA模板
长约20个核苷酸的DNA引物
DNA聚合酶
测序胶
0.1mol/L DDT
α-32P-dATP
dNTP/ddNTP混合物(80μmol/L/8μmol/L)
dNTP(dCTP、dGTP 、dTTP 各0.75μmol/L)
测序反应缓冲液:40mmol/L Tris-HCl(pH7.5),20mmol/L MgCl2,50mmol/L NaCl
终止缓冲液:95% 甲酰胺,20mmol/L EDTA,0.05% 溴酚蓝,0.05% 二甲苯腈
试验步骤:
1、 4个微量离心管中各加入dNTP/ddNTP混合物2.5μl,混合物37OC温浴5min,备用.
2、 在一个空的微量离心管中加入1pmol的PCR扩增双链DNA,10pmol测序引物,2μl 5×测序缓冲液,加双蒸水至总体积10μl,96OC加热8min,冰浴泠却1min,4OC 10000g离心10s.
3、 加入2μl预冷的标记混合物(dCTP、dGTP 、dTTP 各0.75μmol/L),α-32P-dATP 5μCi,1μl 0.1mol/L DDT,测序酶2U,加水至15μl,混匀后置冰上2min,标记新合成的DNA链.
4、 在第1步骤的4个管中各加入3.5μl标记反应混合物,37OC温浴5min.每管各加入4μl终止液.
5、 样品在80OC的水浴中热变性5min,每一泳道加2μl 加到测序胶上,电泳分离这些片段.
注意事项:
1.?PCR产物要有一定的长度(200bp),因为测序结果两端20-30bp的电泳峰图的准确性较低.
2.?纯化PCR产物可通过离子交换层析使扩增的DNA段与反应剩余的dNTP及引物分离;也可通过琼脂糖凝胶电泳,将PCR产物与非特异性扩增产物和引物分离开来;如果扩增的特异性较高时,可直接通过酚:氯仿抽提,乙醇沉淀的方法来纯化.
3.?测序引物设计原则类似于PCR引物设计,可在DNA合成仪上合成20个左右的核苷酸作为引物,经过高压液相层析或聚丙烯酰胺凝胶电泳纯化后,即可用作测序引物.
PCR循环测序法
PCR循环测序法是将PCR扩增和核酸序列分析技术相结合,从而形成的一种测定核苷酸序列的研究方法,也称作线性扩增测序.该方法采用PCR仪加热使DNA模板变性,在TaqDNA聚合酶作用下,以温度循环模式在模板上进行多轮的双脱氧核苷酸测序反应,线性扩增标记的DNA分子.
PCR循环测序法与以往的测序方法相比,其优点在于:大大减少所需的模板量;能提高测序反应产生的信号,降低了操作的复杂性,且聚合酶的用量减少;可在小量制备的模板上进行筛选反应;高温下进行的测序反应使DNA聚合酶催化的聚合反应能够通过模板二级结构的区域;双链闭环DNA可以直接作为反应模板应用,不用作预先碱变性处理.由于PCR循环测序法能够简单、快速地检测特定序列,因此, PCR循环测序法在核酸序列分析研究中受到广泛的重视.
试验试剂:
DNA测序试剂盒
dNTP
ddNTP
丙烯酰胺
双丙烯酰胺
尿素
TEMED(N,N,N‘,N’-四甲基乙二胺)
过硫酸铵
6%测序胶:6%丙烯酰胺,7mmol/L 尿素,1×TBE.
10×测序缓冲液:100mmol/L Tris-HCl(pH8.8),500mmol/L KCl,40mmol/L MgCl2,0.01%明胶,20μmol/L dATP,50μmol/L dCTP,50μmol/L dGTP,50μmol/L dTTP
终止混合液:ddATP (600μmol/L),ddCTP (600μmol/L),ddGTP (100μmol/L),ddTTP(1000μmol/L)
终止缓冲液:95%甲酰胺,20mmol/L EDTA,0.05%溴酚蓝,0.05%二甲苯腈
试验步骤
1、 4个小离心管,每个小管加入3μl的终止混合液,将管子放在冰上.
2、 在DNA模板中加入引物(4pmol), 4μl 10×测序缓冲液, 10μlα-32P-dATP, 2U TaqDNA聚合酶,加双蒸水到30μl彻底混匀,每管7μl加入上面4个小管中.
3、 反应液上加30μl的石蜡油.
4、 95OC 30S,50OC 30S,72OC 60S共30个循环,可根据具体的情况进行适当的调整循环条件及循环次数.
5、 反应结束后在油层下加入5μl的终止缓冲液并用加样枪混匀.
6、 上样前将样品在大于80OC的水浴中热变性5min,每一道加2μl加到测序胶上,电泳分离这些片段.
注意事项:
1、 制备测序模板:PCR 扩增的产物可以经过低熔点的琼脂糖凝胶电泳纯化回收后,用于序列分析;可经过柱层析纯化,去除PCR 反应后剩余的dNTP和引物后,用于序列分析.PCR 产物也可不经纯化直接用于测序,但是这种测序产生的结果较差,建议测序之前应进行PCR产物的纯化.各种标准的质粒制备方法所纯化出的质粒均可作为测序模板使用.用标准方法制备的M13噬菌体、粘粒、λDNA都适合用作测序模板用.但要注意的是反应体系中不应有与引物互补的非目的基因序列,否则将会导致测序实验的失败.
2、 测序引物:测序引物是指合成的与测序模板链特异性互补的寡核苷酸序列.可用α-32P-dATP和T4多聚核苷酸激酶对引物的5‘端进行标记,反应体系中引物、激酶和α-32P-dATP要保持在最佳的比例,以得到高比活性的标记引物;也可用α-32P-dATP标记新合成的DNA链.引物的浓度不宜高,否则容易形成引物二聚体,或产生非特异性的扩增引物.
3、 酶:各种缺乏3‘—5‘端外切活性的耐热DNA聚合酶都可以用于循环测序,其中TaqDNA聚合酶在DNA测序中最为常用.虽然应用PCR循环测序法能够简单、快速的进行基因序列的测定,但仍未能适应大规模DNA序列测定的需要,而PCR循环测序法、荧光标记和自动测序仪的联合使用成为大规模基因组测序的主要技术.该技术是采用荧光标记引物或双脱氧核苷三磷酸,反应产物经聚丙烯酰胺凝胶电泳后,经特定的DNA序列分析仪和分析系统处理待测的DNA序列.它的应用减轻了DNA序列测定的工作量,提高了测序的效率.
操作流程如下:
1、测序文库的构建
首先准备基因组,然后将DNA随机片段化成几百碱基或更短的小片段,并在两头加上特定的接头。如果是转录组测序,则文库的构建要相对麻烦些,RNA片段化之后需反转成cDNA,然后加上接头,或者先将RNA反转成cDNA,然后再片段化并加上接头。
2、锚定桥接
Solexa测序的反应在叫做flow cell的玻璃管中进行,flow cell又被细分成8个Lane,每个Lane的内表面有无数的被固定的单链接头。上述步骤得到的带接头的DNA 片段变性成单链后与测序通道上的接头引物结合形成桥状结构,以供后续的预扩增使用。
3、预扩增
添加未标记的dNTP 和普通Taq 酶进行固相桥式PCR 扩增,单链桥型待测片段被扩增成为双链桥型片段。通过变性,释放出互补的单链,锚定到附近的固相表面。通过不断循环,将会在Flow cell 的固相表面上获得上百万条成簇分布的双链待测片段。
4、单碱基延伸测序
在测序的flow cell中加入四种荧光标记的dNTP 、DNA聚合酶以及接头引物进行扩增,在每一个测序簇延伸互补链时,每加入一个被荧光标记的dNTP就能释放出相对应的荧光,测序仪通过捕获荧光信号,并通过计算机软件将光信号转化为测序峰,从而获得待测片段的序列信息。
5、数据分析
这一步严格来讲不能算作测序操作流程的一部分,但是只有通过这一步前面的工作才显得有意义。测序得到的原始数据是长度只有几十个碱基的序列,要通过生物信息学工具将这些短的序列组装成长的Contigs甚至是整个基因组的框架,或者把这些序列比对到已有的基因组或者相近物种基因组序列上,并进一步分析得到有生物学意义的结果。
扩展资料
第二代测序技术的核心思想是边合成边测序,即通过捕捉新合成的末端的标记来确定DNA的序列,现有的技术平台主要包括Roche/454 FLX、Illumina/Solexa Genome Analyzer和Applied Biosystems SOLID system。
Illumina/Solexa Genome Analyzer测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。
参考资料:百度百科-第二代DNA测序技术
关键词:外泌体基因测序步骤