首页 > 外泌体 >正文

外泌体超滤法(体外循环 超滤)

2022-12-22 03:53:47 作者:max
评论:0

本文目录一览:

尿从哪里出来,又是怎样形成

呵呵,题目好大呀!一、肾小球的滤过功能

尿生成过程包括肾小球滤过、肾小管和集合管重吸收以及肾小管和集合管分泌三个重要步骤(图8-1)。肾小球滤过是尿生成的第一步,指血液流经肾小球毛细血管时,血浆中的水分和小分子溶质(包括分子量较小的血浆白蛋白)通过滤过膜滤入肾小囊形成滤液或原尿的过程。滤液除含蛋白质甚少外,其它成分以及各种成分的浓度,渗透压和酸碱度都与血浆非常接近(表8-2)。由于血细胞和大分子血浆蛋白不能滤入囊腔,故原尿是血浆的超滤液。(一)滤过的结构基础——滤过膜滤过膜由三层结构组成:内层是肾小球毛细血管内皮细胞;中层是基膜;外层是肾小囊内层上皮细胞。血浆从肾小球滤过时,必须依次由内向外通过这三层结构才能滤入囊腔。三层结构均有小孔,以内皮小孔的孔径最大,基膜最小,表明滤过膜的通透性较好,为肾小球滤过提供了基本条件。(二)滤过的动力——有效滤过压肾小球滤过的动力是有效滤过压,与组织液生成的有效滤过压相似。但因滤液中蛋白质含量极微,滤液胶体渗透压可略而不计,故肾小球有效滤过压=肾小球毛细血管血压-(血浆胶体渗透压+肾小囊内压)近年来用微穿刺法直接测得慕尼黑大鼠和松鼠猴的肾小球毛细血管血压平均值为6.0kPa(45mmHg),为主动脉平均血压的40%左右,且入球端和出球端的血压几乎相等。血浆胶体渗透压在入球端为2.7kPa(20mmHg),出球端为4.7kPa(35mmHg),这是由于血液流经入球端后,血浆中水分及小分子溶质不断滤出,而血浆蛋白浓度则不断增加造成的。肾小囊内压约1.3kPa(10mmHg)。人类的各项数值,可能与之近似。根据以上数值,计算出肾小球有效滤过压在:入球端为6.0-(2.7+1.3)=2.0kPa(15mmHg)出球端为6.0-(4.7+1.3)=0kPa(0mmHg)结果说明,在入球端起始部生成滤液的量最多,从入球端到出球端,由于血浆胶体渗透压逐渐升高,有效滤过压递减,滤液生成量逐渐减少,到出球端时有效滤过压为零,故无滤液生成。有效滤过压从入球端到出球端递降的速度,将直接影响肾小球毛细血管生成滤液的有效长度。如果有效滤过压递减速度减慢,肾小球毛细血管生成滤液的有效长度延长,滤液生成量增多;相反,则减少。(三)肾小球滤过率单位时间内两肾生成滤液的量称为肾小球滤过率,正常成人为125ml/min左右。肾小球滤过率与肾血浆流量的比值称为滤过分数。每分钟肾血浆流量约660ml,故滤过分数为125/660×100%≈19%。这一结果表明,流经肾的血浆约有1/5由肾小球滤入囊腔生成原尿。肾小球滤过率和滤过分数是衡量肾功能的指标。成人每昼夜生成的原尿量可达180L,但每日排出的终尿量仅1~2L,可见原尿经过肾小管和集合管时,约有99%的水分被重吸收回血液。再从成分比较(表8-2),终尿与原尿也有很大差别,例如原尿含葡萄糖,终尿无;而终尿所含肌酐、氨又比原尿多。说明原尿尚须通过肾小管和集合管的作用,才能生成终尿。二、肾小管和集合管的重吸收功能肾小球滤液流经肾小管和集合管时(称为小管液),其中的水和各种溶质全部或部分透过小管上皮细胞,重新进入周围毛细血管的血液中去的过程,称为肾小管和集合管的重吸收。由于肾小管各段和集合管的结构各有特点,故重吸收能力差异很大。近球小管的重吸收能力最强,因该段小管上皮细胞的管腔侧膜上有丰富的微绒毛形成刷状缘,使细胞表面积增加40倍,且微绒毛中含有与许多物质重吸收有密切关系的多种酶,故原尿中的各种营养物质几乎全部在近球小管被重吸收,此外,原尿中大部分水和电解质以及部分尿素、尿酸等,

(一)重吸收方式和几种主要物质的重吸收重吸收方式有主动和被动两种。主动重吸收是指小管上皮细胞逆电化学梯度将小管液中某溶质转运到管周组织液的过程。Na+、K+、Ca2+、和葡萄糖、氨基酸等都是主动重吸收。被动重吸收是指小管液中某溶质或水顺电化学梯度或渗透压梯度通过小管上皮细胞进入管周组织液的过程。尿素、水、大部分Cl-等是被动重吸收。1.Na+、葡萄糖和氨基酸的重吸收每日从肾小球滤过的Na+约540g,但随尿排出的Na+仅3~5g,说明滤液中99%以上的Na+被重吸收。约70%在近球小管被重吸收,其余部分在小管各段被重吸收。除髓袢升支细段为被动扩散外,其余各段,均依靠钠泵来完成,属主动重吸收,Cl-和水也随之被动重吸收。Na+重吸收有利于维持内环境中Na+、Cl-的浓度,容量和渗透压的相对稳定。葡萄糖和氨基酸全部在近球小管被主动重吸收,亦依靠钠泵才能完成。2.水的重吸收原尿中的水约99%被重吸收,仅排出1%。如果水的重吸收减少1%,尿量将增加1倍,因此水的重吸收稍有变动会对尿量产生很大影响。原尿中的水约70%在近球小管,10%在髓袢降支细段,10%在远曲小管,10%~20%在集合管被重吸收。在近球小管和髓袢降支细段,水伴随溶质的吸收而被吸收,为等渗性重吸收,这部分水的重吸收与体内是否缺水无关,是固定的,不参与机体对水的调节;远曲小管和集合管对水的重吸收率虽不高,但重吸收的水量能随机体水的出入情况而改变,在血管升压素作用下,当机体缺水时,水重吸收增多,相反则减少。(二)重吸收的特点1.选择性重吸收肾小管和集合管的重吸收功能有选择性。一般说来,滤液中对机体有用的物质全部或大部分被重吸收。如葡萄糖、氨基酸全部被重吸收,水、Na+、Cl-等大部分被重吸收。对机体无用的物质,如代谢终产物肌酐,则完全不重吸收,尿素只部分被重吸收。这一特点有利于肾排泄代谢废物,维持内环境中各种成分的正常浓度。2.有限性重吸收肾小管的重吸收功能有一定限度。当血浆中某物质浓度过高,使滤液中该物质含量过高而超过肾小管重吸收限度时,尿中便出现该物质。以葡萄糖为例,滤液中的葡萄糖来自血糖,当血糖浓度过高,滤液中葡萄糖含量超过肾小管重吸收限度时,尿中即出现葡萄糖,称为糖尿。把尿中不出现葡萄糖的最高血糖浓度,称为肾糖阈。正常肾糖阈为8.88~9.99mmol/L(160~180mg/dl)。三、肾小管和集合管的分泌功能过去把小管上皮细胞将通过本身新陈代谢所产生的物质排到小管液中的过程称为分泌;小管上皮细胞将血液中某些物质直接排入小管液中的过程称为排泄。目前认为,这种区分没有必要,通称为肾小管和集合管的分泌功能,即指小管上皮细胞将细胞本身新陈代谢所产生的物质或血液中某些物质排入小管液的过程。(一)H+的分泌肾小管各段和集合管上皮细胞均能分泌H+,其中80%由近曲小管分泌。由小管上皮细胞代谢所产生或小管液进入小管细胞的CO2。H+逆浓度梯度分泌入小管腔,泌H+所需能量由管周膜上钠泵所提供。H+分泌入管腔与小管液中Na+进入小管上皮细胞同步进行,形成所转运入组织液,再进入血液。由此可知,每分泌1个H+入小管液,同时过程是肾小管和集合管的排酸保碱作用,对维持体内酸碱平衡具有重要意义。

什么是外泌体?

什么是外泌体

人到中年,最难以启齿的矛盾便是脸上越来越多的皱纹和内心与日俱增的

“抗老需求”之间的矛盾。为了今天的容颜不被明天改变,什么玻尿酸、水光针甚至是干细胞美容,我都勇于“尝鲜”。而作为美容界的后起之秀——“外泌体”,我更是不愿错过。毕竟它虽然是近两年兴起的美容模式,但其发展历史也已经有40多年了,而它的美容功效更是有口皆碑,比干细胞美容有过之而无不及,一时间,关于外泌体美容的宣传铺天盖地,可谓是风头无两,颇有“江湖大佬”的地位。但也正因为如此,我们更要科学严谨的对待外泌体美容,了解它的原理,才能更好的应用它。

外泌体,从字面上看,就是细胞向外分泌的物体。科学释义是:细胞所分泌的直径为30~150nm的双层磷脂囊泡,主要功效成分包括蛋白质类物质及micRNA类核酸物质。

外泌体的作用机理

外泌体最大的功能便是人体的“通信兵”,它能在细胞间传递物质,从而调控受体细胞的功能及生物学行为。通俗的说,外泌体就好像一辆“细胞货拉拉”,装了自家一堆有用的东西(里面有miRNA,mRNA和lncRNA等小分子核酸,还有细胞因子等蛋白),然后分泌出细胞外,再接着进入另一个细胞,进行“卸货搬家”。

希吉亚外泌体分离方法

外泌体天然存在于血液、尿液、唾液、母乳和细胞培养基等生物体液中,希吉亚外泌体的分离方法有很多种,常用的有超速离心法、免疫磁珠法等。

Ø

超速离心法:超速离心法是大家最熟悉的一种分离方法,文献中应用最多且也是目前比较受到认可的方法。超速离心是先通过低速离心去除细胞和细胞凋亡碎片,再通过超高速去除大囊泡和沉淀外泌体。此方法耗时耗力,往往需要8-30个小时;且需要大量的起始材料和超速离心机;产量不高。

希吉亚外泌体美容机制

Ø

免疫磁珠法:利用外泌体表面特有的表面标记物(如CD63、CD9蛋白),用包被抗标记物抗体的磁珠与外泌体囊泡孵育后结合,即可将外泌体吸附并分离出来。该方法具有特异性高、操作简便、不影响外泌体形态完整等优点,但外泌体的生物活性易受pH和盐浓度影响,不利于下游实验。

促进细胞再生。外泌体可以有效刺激受体细胞,释放细胞活力,促进其再生和新生。因而可以帮助淡化祛除斑点,促使肌肤光亮细腻。

修复受损细胞。外泌体外泌体可以加速I型胶原和III型胶原的基因表达,促进成纤维细胞增殖、胶原合成,从而让帮助修复受损的肌肤屏障。而且它可以提高受损部位的修复能力和愈合能力。

抑制炎症产生。外泌体可以诱导巨噬细胞向M2型极化,从而降低了巨噬细胞诱发炎症反应的能力,从而抑制炎症。我们肌肤的很多问题都与肌底炎症有关,而外泌体可以通过抑制炎症来让肌肤从内而外的健康起来。

干细胞疗法围绕使用完整细胞来替代丢失的组织。相反,外泌体是与细胞分离的囊泡。外泌体促进恢复青春活力的方式是利用外泌体中携带的有效成分来帮助其他细胞。

干细胞和外泌体的另一个主要区别是前者仅从身体的特定部位获得,例如:骨髓、血液、脂肪组织。而外泌体,可以从几乎所有类型的细胞中获得。胎盘中也含有大量的外泌体。

通过上述科普,大家对外泌体美容一定有了更全面的认识

外泌体提取策略

外泌体即细胞外囊泡(简称EVs)是所有细胞主动分泌的纳米级囊泡,活细胞释放不同类型的细胞外囊泡进入细胞外环境进行细胞间交流,细胞外囊泡越来越多地被认为是有希望的液体活检生物学标志物。根据相似囊泡的直径大小可将细胞外囊泡分为三类,直径在50-150nm的外泌体,直径在100-1000nm的微囊泡、外粒体和微颗粒,直径在-100-5000nm的凋亡小体。目前主要认为,外泌体产生的过程是细胞膜内陷形成内体,再形成多泡体,多泡体与质膜融合导致其管腔内囊泡释放到细胞外,产生一种称为外泌体的EV亚型。

2 外泌体的提取纯化方法

2.1 基于密度的分离方法

2.1.1 超速离心法

超速离心法是最常用的外泌体提取方法,首先,施加较低速度的离心力300g以从细胞培养液中去除细胞;然后,对上清液施加较大的离心力(10000-20000g),去除大的细胞碎片和破碎的细胞器;最后,再次进行高速(100000-150000g)离心从 上清液 中收集外泌体,所有离心在4℃下进行。超速离心法获得的外泌体不被分离试剂污染,且分离数量多,处理样本小。尽管超速离心法是提取外泌体最广泛的“金标准”,但仍然有很多缺点,如所需的超高速离心仪器比较昂贵、样品量大、耗时长、电镜观察外泌体时仍存在蛋白质污染。

2.1.2 蔗糖密度梯度离心法

目前已发现,外泌体在蔗糖梯度为1.15-1.19g/mL密度中漂浮,所以根据这个特性,可以将样品与蔗糖梯度溶液一起超速离心,外泌体沉降到不同的密度区域就可以将其区分出来。蔗糖密度梯度离心法需要预先配好连续梯度浓度的蔗糖溶液,将蔗糖溶液铺于离心管底部,再将样本放于上部,4℃下100000g超速离心。蔗糖密度梯度离心法获得的外泌体纯度较高,但是前期准备复杂,耗时长,又不能完全将外泌体与蛋白质分离开。2013年10月ISEV会议一些研究人员表示,通过蔗糖密度梯度离心法分离囊泡时,细胞囊泡的生物功能丧失。

2.2 沉淀法

2.2.1  聚乙二醇 (PEG)

PEG 是一种水溶性非离子化合物,具有极强的亲水性,可以与疏水的脂质双分子层结合,从而改变外泌体的溶解度而使外泌体沉淀。RIDER等研究发现,PEG水平会影响外泌体的产率,且从外泌体中获得的总蛋白和RNA在数量和质量上足以用于蛋白质组学和测序分析。沉淀法操作简单,不需要特殊设备,更经济,外泌体产量高,但是会沉淀一些非外泌体的疏水性物质而导致外泌体纯度不够。

2.2.2 试剂盒法

最近已经开发出基于聚合物共沉淀的试剂盒,如ExoQuick、TEI等,可用于提取多种体液中的外泌体。聚合物沉淀剂ExoQuick与样品4℃共孵育30min,然后室温1500g离心30min,即可获得外泌体沉淀。与超速离心法比较,试剂盒法更简便、耗时短,且能获得更高的外泌体产量。试剂盒法获得外泌体沉淀含有的杂质较多,不同来源的样本需要使用不同的试剂盒来进行提取,且试剂盒价格较贵。

2.3 基于大小的分离方法

2.3.1 SEC SEC

主要根据外泌体的大小对外泌体进行分离和纯化。样品中大分子物质不能进入凝胶孔而被流动相快速洗脱出来,尺寸小于孔径的物质可进入多孔材料,需要较长时间被洗脱出来,即可通过不同的洗脱时间分离外泌体。BING等证明了琼脂糖凝胶可以从无血小板上清液中纯化出外泌体,通过这种方法,外泌体很容易从蛋白质和高密度脂蛋白中分离出来。HONG等通过改编和使用mini-SEC方法能够有效分离出外泌体,与漫长而复杂的超速离心法不同,它可在30min内完成外泌体分离。通过SEC分离的外泌体纯度较高,分离出结构上完整且功能活跃的囊泡是基于微型SEC分离的重要优势,但数量较少,而且需要特殊设备,故应用不广泛。

2.3.2超滤法

超滤法是根据外泌体的大小使用相应孔径的滤膜,将样品中小分子物质过滤到膜的另一侧,而将大分子物质滞留在膜上来达到分离的目的。超虑法简单、省时、成本低。LIU等改良了简单的超滤法,通过将不同孔径的膜(200、100、80、50、30nm)串联在一起,实现了不同大小外泌体的快速分离,且捕获效率明显高于超速离心法。然而,过滤器很容易被囊泡和其他大分子物质堵塞,这种情况很容易导致膜压力过大而破碎。

2.4 基于表面成分亲和力的分离法

2.4.1 蛋白质

外泌体表面含有丰富的蛋白质,所以基于其表面成分的亲和力特别适合于分离外泌体。CD63是外泌体中发现的最丰富的蛋白质之一,因此,常用抗CD63免疫吸附外泌体。ZHAO等通过使用抗CD63包裹的磁珠与血液样品不断混合,将外泌体捕获到磁珠上后,加 缓冲液 冲洗5min,然后引入3种不同荧光染料标记的抗体[抗CD24、抗上皮细胞黏附分子(抗EpCAM)、抗糖类抗原-125(抗CA-125)],通过观察不同荧光强度可以量化卵巢癌中不同肿瘤标志物的表达水平。

2.4.2 膜磷脂

虽然大部分基于表面成分的亲和方法是基于外泌体表面的蛋白质,但是脂质双层也是一种很好的检测目标。XU等利用外泌体膜上表达的磷脂酰 丝氨酸 (PS)可以被PS结合受体Tim4很好地结合,用Tim4固定化的磁珠与样品反应进行外泌体捕获,并且观察到洗脱的外泌体保持着完整的形态,与商业外泌体提取试剂盒相比,表现出更高的捕获率。CHEN等利用外泌体将带负电荷的PS暴露在膜上的特点,使用带正电荷基团的离子交换树脂的磁珠与血浆样品反应,血浆中的外泌体就能与磁珠结合,通过这种方法分离的外泌体具有比超速离心法更高的回收率和更少的杂质蛋白。

2.5   ACE分离法

ACE微阵列产生的介电泳(DEP)分离力是通过施加交流电场产生的,纳米级的粒子和其他纳米级实体物质被吸引到圆形微电极边缘周围的DEP高场区域,细胞和大的实体物质被吸引到DEP低场区域。 IBS EN等的ACE装置需要30-50μL血浆样品就能够在15min内将外泌体浓缩到微电极周围的高场区域。ACE设备流程明显快于目前使用的方法,这个装置简化了外泌体提取和回收过程的能力,明显减少了加工步骤和消耗时间。CHEN等构建了具有交叉电极的DEP芯片,能在30min内从血浆样品中分离出外泌体。经过测试证明,DEP芯片具有高捕获率和高回收率,需要的时间更短,并且不需要笨重和贵重的仪器。

2.6 微流控芯片法

微流控芯片法是新开发出来的用于快速高效分离样品中外泌体的方法。WOO等使用2个纳米过滤器(Exodisc)集成的实验盘在30min内实现了20-600nm外泌体的全自动富集。使用纳米粒子跟踪分析定量检测证实了细胞培养上清液中外泌体的回收率大于95%。与超速离心法相比,Exodisc提供了高出100倍的mRNA水平,更省时,所需样本量更少。FANG等开发了一种微流体芯片,将包裹了抗CD63的磁珠与血浆样品通入芯片,在第1个腔室中捕获到外泌体,通入一抗与磁珠-外泌体混合物结合,再通入荧光标记的二抗形成磁珠-外泌体-一抗-二抗混合物聚集在第2个腔室。微流控芯片法操作简单,捕获率高,特别适合于生物学研究。外泌体作为癌症诊断的有前景的生物学标志物,其在癌症的液体 活检 中受到关注。外泌体的生物学价值和临床应用价值凸显了开发有效提取和分离外泌体技术的重要性和必要性。相信随着技术的不断进步和创新,外泌体提取将变得更加简便经济,纯度越来越高,完整性越来越好。

提取后往往需要进一步检测,确定提取的是不是外泌体。有三种方法:1. 扫描电镜观察;2. NTA仪器粒径检测;3. WB检测。如图所示,在外泌体上往往存在许多标志物,这时候就可以选择相应的抗体进行WB检测。根据22 篇外泌体相关文献的统计,排在前4 位的检测指标为 CD63(13/22)、Tsg101(8/22)、CD9 和CD81并列第三位(6/22);接着检测较多的4 个指标为Alix (4/22)、HSP70(3/22)、flotillin (3/22)和Syntenin (2/22);此外还有一些指标仅在1 篇文献中出现过,例如HSP90、LAMP2B、LMP1、ADAM10、nicastrin、AChE、AQP2、RPL5、a-1AT。针对外泌体的定性检测至少选择两个指标就能满足文章发表需要了,比如检测CD63 和Tsg101。 

实战分享 | 外泌体提取之经验小结

近些年来,关于外泌体的研究如火如荼。外泌体在免疫中抗原呈递、肿瘤的生长与迁移、组织损伤的修复等生理病理上起着重要的作用。同时,不同细胞分泌的外泌体具有不用的组成成分和功能,可作为疾病诊断的生物标志物。 来自华中科技大学同济医学院附属协和医院的崔老师,对外泌体提取积累了自己的心得,并将自己的研究成果发表在 Bioactive Materials 上。 下文是崔老师的分享。

要进行关于外泌体的研究,提取纯化外泌体一直是大家非常关注的问题。 能否获得较高纯度的足量外泌体,直接关系着后续研究能否开展 。虽然目前仍然没有能同时保证外泌体的含量、纯度和生物活性的提取方法,但是我们可以结合当前的实际情况,对外泌体提取做一些探讨和经验总结。

超速离心(差速离心)法是目前最常用的外泌体提取方法 ,即采用低速离心、高速离心交替进行,可分离到大小相近的囊泡颗粒。超离法因操作简单,获得的囊泡数量较多而广受欢迎。本人近期发表的论文中最后也是采用了这种方法。

具体的步骤大家都比较熟悉,无论是提取血清来源的外泌体,还是细胞条件培养基来源的外泌体 ,大家都习惯于先将血清或者条件培养基收集后保存于-80℃的温度下,等达到一定量后,再批量进行超速离心。

这样的话, 大家会发现一个非常严重的问题,尤其是在拍摄电镜的时候——背景杂质很多,并且很多囊泡的形态不够典型,不是文献中描述的那种典型的双凹圆盘状或者茶托状。

通过几次实验的对比,我大概发现了原因, 主要是由于在冻存收集到培养基的时候,没有进行低速离心和普通高速离心。

低速离心可以去除培养基中的未贴壁细胞、死细胞以及大的细胞残骸,而普通高速离心可以去除其中的大型细胞外囊泡。无论是未贴壁细胞、死细胞、大的细胞残骸,还是大型细胞外囊泡,在-80℃冻存及复温的过程中,都会发生破裂,产生小型的细胞膜碎片结构。

这样的话,就导致了电镜背景很杂乱,难以达到高水平论文杂志期刊的要求。另外,还会导致这样一个矛盾现象,即蛋白定量中计算的外泌体产量虚高,而蛋白免疫印迹中外泌体标记物蛋白的含量却不高。

因此,在这里推荐给大家一个小贴士

就是在收集准备提取外泌体的条件培养基或者血清时,一定要提前做到低速离心和普通高速离心这一步,尤其是为了做透射电镜或者蛋白免疫印迹实验而提取的外泌体 ,一定要注意这一点。尽管过程比较费时,但是能生产出有用的结果才是更重要的。

至于其他的外泌体提取方法,如密度梯度离心、色谱柱、超滤离心法、微流控芯片法、磁珠免疫法、多聚物沉淀法,我看到学校里面鲜少有人去尝试,毕竟更麻烦。但不同的方法各有优劣,大家可根据自己的实验,谨慎选用。

乳铁蛋白有什么作用?求科普

乳铁蛋白(lactoferrin,LF)是乳汁中一种重要的非血红素铁结合糖蛋白,是中性粒细胞颗粒中具有杀菌活性的单体糖蛋白,由科学家MONTREUIJ和JOHANSONB于1960年发现。 乳铁蛋白是一种多功能蛋白质,具有广谱抗菌、抗病毒感染、调节体内铁的平衡、促进骨髓细胞的生成、调节机体免疫的功能。

分布

乳铁蛋白广泛分布于哺乳动物乳汁和其他多种组织及其分泌液中(包括泪液、精液、胆汁、滑膜液等内、外分泌液和嗜中性粒细胞),人乳中乳铁蛋白浓度约为1.0-3.2mg/ml,是牛乳中的10倍(牛乳中含量为0.02-0.35mg/ml),占普通母乳总蛋白的20%,在泌乳期间,乳铁蛋白含量随着泌乳时间的不同而发生变化,如人初乳中乳铁蛋白可达6-14mg/ml,常乳期降至1mg/ml。 乳铁蛋白之所以被重视乃是因为它可以夺走细菌生长所需的铁质而抑制细菌的生长,或破坏细菌细胞膜而具杀死细菌的效果。且可提升免疫力,抑制病毒所引起的感染,如肠病毒中的轮状细菌、肠细菌71型等等。

乳铁蛋白的分离方法

目前报道的Lf分离方法很多,主要有色谱法(吸附色谱法、离子交换色谱法、亲和色谱法、固定化单系抗体法等)和超滤法。

色谱法的优点是分离效果好、纯度高,抗体被固定化可重复使用,其缺点是柱的制备工艺复杂,抗体成本昂贵,难以工业化生产。超滤法操作简便,费用相对较低,易于形成工业化规模,其缺点是乳铁蛋白纯度较低,膜需经常清洗。超滤法是生产食品用乳铁蛋白最具实现工业化潜力的方法之一

乳铁蛋白属于先天免疫系统的成分物质。除了能够结合和运输铁离子的主要功能外,乳铁蛋白还具有抗菌,抗病毒,抗寄生虫,催化,防癌抗癌,抗过敏和辐射防护的功能和属性。

app
公众号
投稿 评论 关灯 顶部