一种孔径规格一致,额定孔径范围为0.001-0.02微米的微孔过滤膜。采用超滤膜以压力差为推动力的膜过滤方法为超滤膜过滤。超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。最适于处理溶液中溶质的分离和增浓,也常用于其他分离技术难以完成的胶状悬浮液的分离,其应用领域在不断扩大。
以压力差为推动力的膜过滤可区分为超滤膜过滤、微孔膜过滤和逆渗透膜过滤三类。它们的区分是根据膜层所能截留的最小粒子尺源明寸或分子量大小。以膜的额定孔径范围作为区分标准时,则微孔膜(MF)的额定孔径范围为0.02~10μm;超滤膜(UF)为0.001~0.02μm;逆渗透膜(RO)为0.0001~0.001μm。由此可知,超滤膜最适于处理旅裂晌溶液中溶质的分离和增浓,或采用其他分离技术所难以完成的胶状悬浮液的分离。超滤膜的制膜技术,即获得预期尺寸和窄分布微孔的技术是极其重要的。孔的控制因素较多,如根据制膜时溶液的种类和浓度、蒸发及凝聚条件等不同可得到不拆锋同孔径及孔径分布的超滤膜。超滤膜一般为高分子分离膜,用作超滤膜的高分子材料主要有纤维素衍生物、聚砜、聚丙烯腈、聚酰胺及聚碳酸酯等。超滤膜可被做成平面膜、卷式膜、管式膜或中空纤维膜等形式,广泛用于如医药工业、食品工业、环境工程等。
我们都知道筛子是用来筛东西的,它能将细小物体放行,而将个头较大的截留下来。可是,您听说过能筛分子的筛子吗?超膜 --这种超级筛子能将尺寸不等的分子筛分开来!那么,到底什么是超滤膜呢?
超滤膜是一种具有超级“筛分”分离功能的多孔膜。它的孔径只有几纳米到几十纳米,也就是说只有一根头发丝的1‰!在膜的一侧施以适当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。超滤膜的结构有对称和非对称之分。前者是各向同性的,没有皮层,所有方向上的孔隙都是一样的,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。工业使用的超滤膜一般为非对称膜。超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等等。
污水处理设备能有效处理城区的生活污水,工业废水等,避免污水及污染物直接流入水域,对改善生态环境、提升城市品位和促进经济发展具有重要意义。
工作原理
超滤是一种以筛分为分离原理,以压力为推动力的膜分离过程,过滤精度在0.005-0.01μm范围内, 可有效去除水中的微粒、胶体、细菌、热源及高分子有机物质。可广泛应用于物质的分离、浓缩、提纯。超滤过程无相转化,常温下操作,对热敏性物质的分离尤为适宜,并具有良好的耐温、耐酸碱和耐氧化性能,能在60℃ 以下,pH为2-11的条件下长期连续使用。
工艺流程
原水→格栅→调节池→提升泵→生物反应器→循环泵→膜组件→消毒装置→中水贮池→中水用水系统
工艺流程说明
污水经格栅进入调节池后经提升泵进入生物反应器,通过PLC控制器开启曝气机充氧,生物反应器出水经循环泵进入膜分离处理单元,浓水返回调节池,膜分离的水经过快速混合法氯化消毒(次氯酸钠、漂白粉、氯片)后,进入中水贮水池池。反冲洗泵利用清洗池中处理水对膜处理设备进行反冲洗,反冲污水返回调节池。通过生物反应器内的水位控制提升泵的启闭。膜单元的过滤操作与反冲洗操作可自动或手动控制。当膜单元仿坦需要化学清洗操作时,关闭进水阀和污水循环阀,打开药洗阀和药剂循环阀,启动药液循环泵,进行化学清洗操作。
本一体化生物反应器采用可编程序控制器(PLC)控制。有以下功能:
·膜生物反应器全过程采用自动控制系统,大大减少了运行管理费用。
·当生物反应器内水到高水位时,提升泵停止运行,当水位降至低水位时提升泵自动开启。
·根据中水贮水池水位自动开启、关闭循环泵。
重金属污水处理成套设备
·自动开启、关闭加药泵,加药量可根据需要调整。
·自动运行膜清洗、消毒程序。
·电机设有过流、过载保护。
已建的中水回用工程普遍存在处理效果欠佳、运行费用较高、设施占地面积较大等问题,处理设施运转不理想。因此我国的城市中水处理事业迫切需要开发经济高效适用的处理工艺和配套设备。
MBR工艺特点
膜生物污水处理技术应用于废水再生利用方面,具有以下几个特点:
(1)能高效地进行固液分离,将废水中的悬浮物质、胶体物质、生物单元流失的微生物菌群与已净化的水分开。分离工艺简单,占地面积小,出水水质好,一般不须经三级处理即可回用。
(2)可使生物处理单元内生物量维持在高浓度,使容积负荷大大提高,同时膜分离的高效性,使处理单元水力停留时间大大的缩短,生物反应器的占地面积相应减少。
(3)由于可防止各种微生物菌群的流失,有利于生长速度缓慢的细菌(硝化细菌等)的生长,从而使系统中各种代谢过程顺利进行。
(4)使一些大分子难降解有机物的停留时间变长,有利于它们的分解。
(5)膜处理技术与其它的过滤分离技术一样,在长期的运转过程中,膜作为一种过滤介质堵塞,膜的通过水量运转伏大困时间而逐渐下降有效的反冲洗和缺念化学清洗可减缓膜通量的下降,维持MBR系统的有效使用寿命。
(6)MBR技术应用在城市污水处理中,由于其工艺简单,操作方便,可以实现全自动运行管理。
外泌体即细胞外囊泡(简孙纳卜称EVs)是所有细胞主动分泌的纳米级囊泡,活细胞释放不同类型的细胞外囊泡进入细胞外环境进行细胞间交流,细胞外囊泡越来越多地被认为是有希望的液体活检生物学标志物。根据相似囊泡的直径大小可将细胞外囊泡分为三类,直径在50-150nm的外泌体,直径在100-1000nm的微囊泡、外粒体和微颗粒,直径在-100-5000nm的凋亡小体。目前主要认为,外泌体产生的过程是细胞膜内陷形成内体,再形成多泡体,多泡体与质膜融合导致其管腔内囊泡释放到细胞外,产生一种称为外泌体的EV亚型。
2 外泌体的提取纯化方法
2.1 基于密度的分离方法
2.1.1 超速离心法
超速离心法是最常用的外泌体提取方法,首先,施加较低速度的离心力300g以从细胞培养液中去除细胞;然后,对上清液施加较大的离心力(10000-20000g),去除大的细胞碎片和破碎的细胞器;最后,再次进行高速(100000-150000g)离心从 上清液 中收集外泌体,所有离心在4℃下进行。超速离心法获得的外泌体不被分离试剂污染,且分离数量多,处理样本小。尽管超速离心法是提取外泌体最广泛的“金标准”,但仍然有很多缺点,如所需的超高速离心仪器比较昂贵、样品量大、耗时长、电镜观察外泌体时仍存在蛋白质污染。
2.1.2 蔗糖密度梯度离心法
目前已发现,外泌体在蔗糖梯度为1.15-1.19g/mL密度中漂浮,所以根据这个特性,可以将样品与蔗糖梯度溶液一起超速离心,外泌体沉降到不同的密度区域就可以将其区分出来。蔗糖密度梯度离心法需要预先配好连续梯度浓度的蔗糖溶液,将蔗糖溶液铺于离心管底部,再将样本放于上部,4℃下100000g超速离心。蔗糖密度梯度离心法获得的外泌体纯度较高,但是前期准备复杂,耗时长,又不能完全将外泌体与蛋白质分离开。2013年10月ISEV会议一些研究人员表示,通过蔗糖密度梯度离心法分离囊泡时,细胞囊泡的生物功能丧失。
2.2 沉淀法
2.2.1 聚乙二醇 (PEG)
PEG 是一种水溶性非离子化合物,具有极强的亲水性,可以与疏水的脂质双分子层结合,从而改变外泌体的溶解度而使外泌体沉淀。RIDER等研究发现,PEG水平会影响外泌体的产率,且从外泌体中获得的总蛋白和RNA在数量和质量上足以用于蛋白质组学和测序分析。沉淀法操作简单,不需要特殊设备,更经济,外泌体产量高,但是会沉淀一些非外泌体的疏水性物质而导致外泌体纯度不够。
2.2.2 试剂盒法
最近已经开发出基于聚合物共沉淀的试剂盒,如ExoQuick、TEI等,可用于提取多种体液中的外泌体。聚合物沉淀剂ExoQuick与样品4℃共孵育30min,然后室温1500g离心30min,即可获得外泌体沉淀。与超速离心法比较,试剂盒法更简便、耗时短,且能获得更高的外泌体产量。试剂盒法获得外泌体沉淀含有的杂质较多,不同来源的样本需要使用不同的试剂盒来进行提取,且试剂盒价格较贵。
2.3 基于大小的分离方法
2.3.1 SEC SEC
主要根据外泌体的大小对外泌体进行分离和纯化。样品中大分子物质不能进入凝胶孔而被流动相快速洗脱出来,尺寸小于孔径的物质可进入多孔材料,需要较长时间被洗脱出来,即可通过不同的洗脱时间分离外泌体。BING等证明了琼脂糖凝胶可以从无血小板上清液中纯化出外泌体,通过这种方法茄吵,外泌体很容易从蛋白质和高密度脂蛋白中分离出来。HONG等通过改编和使用mini-SEC方法能够有效分离出外泌体,与漫长而复杂的超速离心法不同,它可在30min内完成外泌体分离。通过SEC分离的外泌体纯度较高,分离出结构上完整且功能活跃的囊泡是基于微型SEC分离的重要优势,但数量较少,而且需要特殊设备,故应用不广泛。
2.3.2超滤法
超滤法是根据外泌体的大小使用相应孔径的滤膜,将样品中小分子物质过滤到膜的另一侧,而将大分子物质滞留在膜上来达到分离的目的。超虑法简单、省时、成本低。LIU等改则穗良了简单的超滤法,通过将不同孔径的膜(200、100、80、50、30nm)串联在一起,实现了不同大小外泌体的快速分离,且捕获效率明显高于超速离心法。然而,过滤器很容易被囊泡和其他大分子物质堵塞,这种情况很容易导致膜压力过大而破碎。
2.4 基于表面成分亲和力的分离法
2.4.1 蛋白质
外泌体表面含有丰富的蛋白质,所以基于其表面成分的亲和力特别适合于分离外泌体。CD63是外泌体中发现的最丰富的蛋白质之一,因此,常用抗CD63免疫吸附外泌体。ZHAO等通过使用抗CD63包裹的磁珠与血液样品不断混合,将外泌体捕获到磁珠上后,加 缓冲液 冲洗5min,然后引入3种不同荧光染料标记的抗体[抗CD24、抗上皮细胞黏附分子(抗EpCAM)、抗糖类抗原-125(抗CA-125)],通过观察不同荧光强度可以量化卵巢癌中不同肿瘤标志物的表达水平。
2.4.2 膜磷脂
虽然大部分基于表面成分的亲和方法是基于外泌体表面的蛋白质,但是脂质双层也是一种很好的检测目标。XU等利用外泌体膜上表达的磷脂酰 丝氨酸 (PS)可以被PS结合受体Tim4很好地结合,用Tim4固定化的磁珠与样品反应进行外泌体捕获,并且观察到洗脱的外泌体保持着完整的形态,与商业外泌体提取试剂盒相比,表现出更高的捕获率。CHEN等利用外泌体将带负电荷的PS暴露在膜上的特点,使用带正电荷基团的离子交换树脂的磁珠与血浆样品反应,血浆中的外泌体就能与磁珠结合,通过这种方法分离的外泌体具有比超速离心法更高的回收率和更少的杂质蛋白。
2.5 ACE分离法
ACE微阵列产生的介电泳(DEP)分离力是通过施加交流电场产生的,纳米级的粒子和其他纳米级实体物质被吸引到圆形微电极边缘周围的DEP高场区域,细胞和大的实体物质被吸引到DEP低场区域。 IBS EN等的ACE装置需要30-50μL血浆样品就能够在15min内将外泌体浓缩到微电极周围的高场区域。ACE设备流程明显快于目前使用的方法,这个装置简化了外泌体提取和回收过程的能力,明显减少了加工步骤和消耗时间。CHEN等构建了具有交叉电极的DEP芯片,能在30min内从血浆样品中分离出外泌体。经过测试证明,DEP芯片具有高捕获率和高回收率,需要的时间更短,并且不需要笨重和贵重的仪器。
2.6 微流控芯片法
微流控芯片法是新开发出来的用于快速高效分离样品中外泌体的方法。WOO等使用2个纳米过滤器(Exodisc)集成的实验盘在30min内实现了20-600nm外泌体的全自动富集。使用纳米粒子跟踪分析定量检测证实了细胞培养上清液中外泌体的回收率大于95%。与超速离心法相比,Exodisc提供了高出100倍的mRNA水平,更省时,所需样本量更少。FANG等开发了一种微流体芯片,将包裹了抗CD63的磁珠与血浆样品通入芯片,在第1个腔室中捕获到外泌体,通入一抗与磁珠-外泌体混合物结合,再通入荧光标记的二抗形成磁珠-外泌体-一抗-二抗混合物聚集在第2个腔室。微流控芯片法操作简单,捕获率高,特别适合于生物学研究。外泌体作为癌症诊断的有前景的生物学标志物,其在癌症的液体 活检 中受到关注。外泌体的生物学价值和临床应用价值凸显了开发有效提取和分离外泌体技术的重要性和必要性。相信随着技术的不断进步和创新,外泌体提取将变得更加简便经济,纯度越来越高,完整性越来越好。
提取后往往需要进一步检测,确定提取的是不是外泌体。有三种方法:1. 扫描电镜观察;2. NTA仪器粒径检测;3. WB检测。如图所示,在外泌体上往往存在许多标志物,这时候就可以选择相应的抗体进行WB检测。根据22 篇外泌体相关文献的统计,排在前4 位的检测指标为 CD63(13/22)、Tsg101(8/22)、CD9 和CD81并列第三位(6/22);接着检测较多的4 个指标为Alix (4/22)、HSP70(3/22)、flotillin (3/22)和Syntenin (2/22);此外还有一些指标仅在1 篇文献中出现过,例如HSP90、LAMP2B、LMP1、ADAM10、nicastrin、AChE、AQP2、RPL5、a-1AT。针对外泌体的定性检测至少选择两个指标就能满足文章发表需要了,比如检测CD63 和Tsg101。
关键词:外泌体超滤管工作原理