首页 > 外泌体 >正文

外泌体糖基化(糖基化代谢)

2022-12-24 03:57:48 作者:max
评论:0

本文目录一览:

什么是NK细胞外泌体?

世界上有成千上万种不同的疾病,不过所有的疾病都可以归因于身体细胞功能出现了故障。 健康并不是一种偶然,而是一种选择 ,我们每个人都可以选择健康!

糖尿病是一种以高血糖为特征的代谢性疾病,是现代社会典型的“富贵病”之一。 Ⅱ型糖尿病(T2DM) 的病理相对I型糖尿病更为复杂,主要是胰岛β细胞功能障碍和不同程度的胰岛素抵抗,导致无法维持血糖稳态。典型病例可出现多尿、多饮、多食、消瘦等表现,即 “三多一少"症状 ,导致各种组织,特别是眼、肾、心脏、血管、神经的慢性损害和功能障碍,最终可能发展为慢性并发症。

1、 II型糖尿病与胰岛素抵抗

现代社会物质极大丰富,各种美食不停刺激我们的味蕾,很少有小伙伴能抵挡美食的诱惑。然而随之而来的是 肥胖症 的发病率迅速升高,据统计,中国已成为肥胖人口最多的国家。而 肥胖则是Ⅱ型糖尿病的重要危险因素 。体内过多脂肪导致的游离脂肪酸会引起胰岛素抵抗,使脂肪细胞、肌肉细胞和肝细胞对胰岛素的敏感性降低,并导致胰岛素信号传导失调和葡萄糖、脂肪和蛋白质的代谢紊乱 ; 随之而来的高血糖症又促使胰腺不得不分泌更多胰岛素,导致高胰岛素血症。这些因素叠加起来,最终可能导致Ⅱ型糖尿病的发生。

2、 NK细胞与胰岛素抵抗的关系

胰岛 素抵 抗 是由肥胖所引发的严重的并发症,最终会导致Ⅱ型糖尿病。肥胖引起胰岛素抵抗的一个重要原因是起源于内脏脂肪组织(visceraladiposetissue,VAT)的慢性系统性炎症。VAT炎症与促进炎症巨噬细胞在脂肪组织的积累相关,但是诱发巨噬细胞积累的免疫信号仍然未知。

来自克罗地亚里耶卡大学的研究团队发现脂肪组织内的不同表型的自然杀伤细胞(naturalkiller,NK)在肥胖应激及胰岛素抵抗过程中发挥着重要作用。研究人员对两组实验小鼠分别给与普通饮食和高脂肪饮食,发现高脂肪的饮食组的脂肪组织里有NK和干扰素γ(Interferon-γ,IFN-γ)的产生,这表明 NK在肥 胖引发的 脂肪应激和VAT炎症之间存在着关键的联系 。

研究结果表明:肥胖引起脂肪细胞中NK细胞激活受体1(NKcell-activatingreceptor1,NCR1)的配体上调;这刺激NK细胞增殖,刺激IFN-γ产生,进而引起促炎巨噬细胞的分化,产生胰岛素抵抗。NK细胞缺失,NCR1或者IFN-γ能阻止促炎巨噬细胞在VAT的积累,这会大大改善胰岛素敏感。

因此NK细胞是在响应肥胖引起的脂肪应激过程中巨噬细胞分化和胰岛素抵抗的 关键调控子 。此项研究提供了重要的理论依据,证明脂肪组织中的NK细胞及巨噬细胞,可作为治疗代谢综合症病人,及 降低Ⅱ型糖尿病进展风险的新靶点 。

3、 NK细胞外泌体:潜在新策略

自然杀伤(NK)细胞 被认为通过调节全身炎症与Ⅱ型糖尿病相关。然而,NK细胞调节胰岛素敏感性的机制仍然未知。

2021年11月30日,中国药科大学徐寒梅团队在SignalTransductionandTargetedTherapy(IF=18.19)在线发表题为“Naturalkillercell-derivedexosomalmiR-1249-3pattenuatesinsulinresistanceandinflammationinmousemodelsoftype2diabetes”的研究论文,该研究发现来自 瘦小鼠的NK衍生外泌体减轻了肥胖诱导的Ⅱ型糖尿病小鼠的胰岛素抵抗和炎症。此外,瘦NK衍生的外泌体可增强胰岛素敏感性并缓解脂肪细胞和肝细胞的炎症 。MiR-1249-3p在瘦NK衍生的外泌体中显著上调,可以通过外泌体从NK细胞转移到脂肪细胞和肝细胞。 NK衍生的外泌体miR-1249-3p显著诱导细胞胰岛素敏感性并缓解炎症 。

从机制上讲,外泌体miR-1249-3p直接靶向SKOR1以调节三元复合物SMAD6/MYD88/SMURF1的形成,其通过抑制TLR4/NF-κB信号通路介导葡萄糖稳态。该研究揭示了NK衍生的外泌体miR-1249-3p在缓解胰岛素抵抗中的新作用,并为Ⅱ型糖尿病提供了一系列潜在的治疗靶点。

Ⅱ型糖尿病是代谢性糖尿病的最常见形式,特征是 高血糖(也称为高血糖症)和胰岛素抵抗 。遵循高脂肪饮食的个体特别容易患肥胖症,这显然是人类胰岛素抵抗的最常见原因。胰岛素抵抗的症状包括脂肪细胞、肌肉细胞和肝细胞对胰岛素的敏感性降低,以及失调的胰岛素信号和葡萄糖、脂肪和蛋白质的代谢紊乱,最终导致Ⅱ型糖尿病的平行上升。Ⅱ型糖尿病患者总是伴随着亚临床全身性低度炎症反应和脂肪组织、肝脏、胰岛、下丘脑、心脏组织和其他组织的功能障碍,最终发展为慢性并发症。

先前的研究表明, 免疫系统调节全身的代谢器官 。各种免疫细胞,如T细胞、B细胞、巨噬细胞和NK细胞,在Ⅱ型糖尿病中起着至关重要的作用。肥胖诱导炎症,其特征是巨噬细胞浸润增加,并与巨噬细胞群从抗炎M2巨噬细胞转变为促炎M1巨噬细胞相关,在很大程度上导致肥胖引起的胰岛素抵抗。 NK细胞和巨噬细胞可以合作调节炎症 。此外,脂肪细胞上调肥胖中NK细胞激活受体(NCR1)的配体,这会触发NK细胞的增殖。事实上,NK细胞在肥胖诱导的炎症和胰岛素抵抗中起着关键作用。然而,NK细胞在肥胖引起的炎症中的作用和机制尚不清楚。 

外泌体是直径约30-150nm的囊泡状体 ,是细胞内体膜向内出芽形成的多囊泡,与细胞膜融合后释放到细胞外环境中。外泌体由各种类型的细胞产生,并通过运输信息货物作为细胞间通讯的介质,例如蛋白质、脂质和RNA(miRNA、mRNA、lncRNA和circRNA),在外泌体中稳定并转移。此外,外泌体可以由胰岛β细胞、干细胞和胰岛素敏感组织分泌,然后转移到代谢器官、免疫细胞和内皮细胞以维持葡萄糖稳态或通过免疫反应、氧化应激和血管生成加重胰岛素抵抗。然而,脾脏NK细胞衍生的外泌体在Ⅱ型糖尿病的发生和发展中的参与尚不清楚。

NK细胞通过控制炎症因子的释放在小鼠体内发挥抗抑郁样作用。 NK细胞衍生的外泌体miR-207减少促炎细胞因子(IL-1β、IL-6和TNF-α)的释放并减轻小鼠的抑郁样症状 。在这项研究中,揭示了 NK衍生的外泌体在缓解胰岛素抵抗中的新作用,并为Ⅱ型糖尿病提供了潜在的治疗靶点 。

什么是外泌体?

外泌体是健康和疾病中细胞间近距离通讯的介质,影响细胞生物学的各个方面。[1]

所有培养的细胞类型均可分泌外泌体,且外泌体天然存在于体液中,包括血液、唾液、尿液、脑脊液和乳汁中。有关他们分泌和摄取及其组成、“运载物”和相应功能的精确分子机制刚刚开始研究。外泌体目前被视为特异性分泌的膜泡,参与细胞间通讯,对外泌体的研究兴趣日益增长,无论是研究其功能还是了解如何将其用于微创诊断的开发。

外泌体提取策略

外泌体即细胞外囊泡(简称EVs)是所有细胞主动分泌的纳米级囊泡,活细胞释放不同类型的细胞外囊泡进入细胞外环境进行细胞间交流,细胞外囊泡越来越多地被认为是有希望的液体活检生物学标志物。根据相似囊泡的直径大小可将细胞外囊泡分为三类,直径在50-150nm的外泌体,直径在100-1000nm的微囊泡、外粒体和微颗粒,直径在-100-5000nm的凋亡小体。目前主要认为,外泌体产生的过程是细胞膜内陷形成内体,再形成多泡体,多泡体与质膜融合导致其管腔内囊泡释放到细胞外,产生一种称为外泌体的EV亚型。

2 外泌体的提取纯化方法

2.1 基于密度的分离方法

2.1.1 超速离心法

超速离心法是最常用的外泌体提取方法,首先,施加较低速度的离心力300g以从细胞培养液中去除细胞;然后,对上清液施加较大的离心力(10000-20000g),去除大的细胞碎片和破碎的细胞器;最后,再次进行高速(100000-150000g)离心从 上清液 中收集外泌体,所有离心在4℃下进行。超速离心法获得的外泌体不被分离试剂污染,且分离数量多,处理样本小。尽管超速离心法是提取外泌体最广泛的“金标准”,但仍然有很多缺点,如所需的超高速离心仪器比较昂贵、样品量大、耗时长、电镜观察外泌体时仍存在蛋白质污染。

2.1.2 蔗糖密度梯度离心法

目前已发现,外泌体在蔗糖梯度为1.15-1.19g/mL密度中漂浮,所以根据这个特性,可以将样品与蔗糖梯度溶液一起超速离心,外泌体沉降到不同的密度区域就可以将其区分出来。蔗糖密度梯度离心法需要预先配好连续梯度浓度的蔗糖溶液,将蔗糖溶液铺于离心管底部,再将样本放于上部,4℃下100000g超速离心。蔗糖密度梯度离心法获得的外泌体纯度较高,但是前期准备复杂,耗时长,又不能完全将外泌体与蛋白质分离开。2013年10月ISEV会议一些研究人员表示,通过蔗糖密度梯度离心法分离囊泡时,细胞囊泡的生物功能丧失。

2.2 沉淀法

2.2.1  聚乙二醇 (PEG)

PEG 是一种水溶性非离子化合物,具有极强的亲水性,可以与疏水的脂质双分子层结合,从而改变外泌体的溶解度而使外泌体沉淀。RIDER等研究发现,PEG水平会影响外泌体的产率,且从外泌体中获得的总蛋白和RNA在数量和质量上足以用于蛋白质组学和测序分析。沉淀法操作简单,不需要特殊设备,更经济,外泌体产量高,但是会沉淀一些非外泌体的疏水性物质而导致外泌体纯度不够。

2.2.2 试剂盒法

最近已经开发出基于聚合物共沉淀的试剂盒,如ExoQuick、TEI等,可用于提取多种体液中的外泌体。聚合物沉淀剂ExoQuick与样品4℃共孵育30min,然后室温1500g离心30min,即可获得外泌体沉淀。与超速离心法比较,试剂盒法更简便、耗时短,且能获得更高的外泌体产量。试剂盒法获得外泌体沉淀含有的杂质较多,不同来源的样本需要使用不同的试剂盒来进行提取,且试剂盒价格较贵。

2.3 基于大小的分离方法

2.3.1 SEC SEC

主要根据外泌体的大小对外泌体进行分离和纯化。样品中大分子物质不能进入凝胶孔而被流动相快速洗脱出来,尺寸小于孔径的物质可进入多孔材料,需要较长时间被洗脱出来,即可通过不同的洗脱时间分离外泌体。BING等证明了琼脂糖凝胶可以从无血小板上清液中纯化出外泌体,通过这种方法,外泌体很容易从蛋白质和高密度脂蛋白中分离出来。HONG等通过改编和使用mini-SEC方法能够有效分离出外泌体,与漫长而复杂的超速离心法不同,它可在30min内完成外泌体分离。通过SEC分离的外泌体纯度较高,分离出结构上完整且功能活跃的囊泡是基于微型SEC分离的重要优势,但数量较少,而且需要特殊设备,故应用不广泛。

2.3.2超滤法

超滤法是根据外泌体的大小使用相应孔径的滤膜,将样品中小分子物质过滤到膜的另一侧,而将大分子物质滞留在膜上来达到分离的目的。超虑法简单、省时、成本低。LIU等改良了简单的超滤法,通过将不同孔径的膜(200、100、80、50、30nm)串联在一起,实现了不同大小外泌体的快速分离,且捕获效率明显高于超速离心法。然而,过滤器很容易被囊泡和其他大分子物质堵塞,这种情况很容易导致膜压力过大而破碎。

2.4 基于表面成分亲和力的分离法

2.4.1 蛋白质

外泌体表面含有丰富的蛋白质,所以基于其表面成分的亲和力特别适合于分离外泌体。CD63是外泌体中发现的最丰富的蛋白质之一,因此,常用抗CD63免疫吸附外泌体。ZHAO等通过使用抗CD63包裹的磁珠与血液样品不断混合,将外泌体捕获到磁珠上后,加 缓冲液 冲洗5min,然后引入3种不同荧光染料标记的抗体[抗CD24、抗上皮细胞黏附分子(抗EpCAM)、抗糖类抗原-125(抗CA-125)],通过观察不同荧光强度可以量化卵巢癌中不同肿瘤标志物的表达水平。

2.4.2 膜磷脂

虽然大部分基于表面成分的亲和方法是基于外泌体表面的蛋白质,但是脂质双层也是一种很好的检测目标。XU等利用外泌体膜上表达的磷脂酰 丝氨酸 (PS)可以被PS结合受体Tim4很好地结合,用Tim4固定化的磁珠与样品反应进行外泌体捕获,并且观察到洗脱的外泌体保持着完整的形态,与商业外泌体提取试剂盒相比,表现出更高的捕获率。CHEN等利用外泌体将带负电荷的PS暴露在膜上的特点,使用带正电荷基团的离子交换树脂的磁珠与血浆样品反应,血浆中的外泌体就能与磁珠结合,通过这种方法分离的外泌体具有比超速离心法更高的回收率和更少的杂质蛋白。

2.5   ACE分离法

ACE微阵列产生的介电泳(DEP)分离力是通过施加交流电场产生的,纳米级的粒子和其他纳米级实体物质被吸引到圆形微电极边缘周围的DEP高场区域,细胞和大的实体物质被吸引到DEP低场区域。 IBS EN等的ACE装置需要30-50μL血浆样品就能够在15min内将外泌体浓缩到微电极周围的高场区域。ACE设备流程明显快于目前使用的方法,这个装置简化了外泌体提取和回收过程的能力,明显减少了加工步骤和消耗时间。CHEN等构建了具有交叉电极的DEP芯片,能在30min内从血浆样品中分离出外泌体。经过测试证明,DEP芯片具有高捕获率和高回收率,需要的时间更短,并且不需要笨重和贵重的仪器。

2.6 微流控芯片法

微流控芯片法是新开发出来的用于快速高效分离样品中外泌体的方法。WOO等使用2个纳米过滤器(Exodisc)集成的实验盘在30min内实现了20-600nm外泌体的全自动富集。使用纳米粒子跟踪分析定量检测证实了细胞培养上清液中外泌体的回收率大于95%。与超速离心法相比,Exodisc提供了高出100倍的mRNA水平,更省时,所需样本量更少。FANG等开发了一种微流体芯片,将包裹了抗CD63的磁珠与血浆样品通入芯片,在第1个腔室中捕获到外泌体,通入一抗与磁珠-外泌体混合物结合,再通入荧光标记的二抗形成磁珠-外泌体-一抗-二抗混合物聚集在第2个腔室。微流控芯片法操作简单,捕获率高,特别适合于生物学研究。外泌体作为癌症诊断的有前景的生物学标志物,其在癌症的液体 活检 中受到关注。外泌体的生物学价值和临床应用价值凸显了开发有效提取和分离外泌体技术的重要性和必要性。相信随着技术的不断进步和创新,外泌体提取将变得更加简便经济,纯度越来越高,完整性越来越好。

提取后往往需要进一步检测,确定提取的是不是外泌体。有三种方法:1. 扫描电镜观察;2. NTA仪器粒径检测;3. WB检测。如图所示,在外泌体上往往存在许多标志物,这时候就可以选择相应的抗体进行WB检测。根据22 篇外泌体相关文献的统计,排在前4 位的检测指标为 CD63(13/22)、Tsg101(8/22)、CD9 和CD81并列第三位(6/22);接着检测较多的4 个指标为Alix (4/22)、HSP70(3/22)、flotillin (3/22)和Syntenin (2/22);此外还有一些指标仅在1 篇文献中出现过,例如HSP90、LAMP2B、LMP1、ADAM10、nicastrin、AChE、AQP2、RPL5、a-1AT。针对外泌体的定性检测至少选择两个指标就能满足文章发表需要了,比如检测CD63 和Tsg101。 

什么是细胞外泌体_细胞外泌体是什么?

外泌体是指包含了复杂 RNA 和蛋白质的小膜泡 (30-150nm),现今,其特指直径在40-100nm的盘状囊泡。1983年,外泌体首次于绵羊网织红细胞中被发现, 1987年Johnstone将其命名为“exosome”。多种细胞在正常及病理状态下均可分泌外泌体。其主要来源于细胞内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中 。

所有培养的细胞类型均可分泌外泌体,且外泌体天然存在于体液中,包括血液、唾液、尿液、脑脊液和乳汁中。 有关他们分泌和摄取及其组成、“运载物”和相应功能的精确分子机制刚刚开始研究。 外泌体被视为特异性分泌的膜泡,参与细胞间通讯,对外泌体的研究兴趣日益增长,无论是研究其功能还是了解如何将其用于微创诊断的开发。

1983年,外泌体首次于绵羊网织红细胞中被发现, 1987年Johnstone将其命名为“exosome”。现今,其特指直径在40-100nm的盘状囊泡。多种细胞在正常及病理状态下均可分泌外泌体。其主要来源于细胞内内溶酶体微粒内陷形成的多囊泡体,经多囊泡体外膜与细胞膜融合后释放到胞外基质中 。

外泌体富含胆固醇和鞘磷脂。2007年, Valadi等发现鼠的肥大细胞分泌 的 exosome可以被人的肥大细胞捕获,并且其携带的mRNA成分可以进入细胞浆中可以被翻译成蛋白质,不仅仅是mRNA,exosomes所转移的microRNA同样具有生物活性,在进入靶细胞后可以靶向调节细胞中mRNA的水平。这一发现使得研究人员对exosome的研究热情激增,截止已经通过286项研究发现了41860种蛋白质、2838种microRNA、3408种mRNA。

一类外泌体中常见的细胞质蛋白是Rabs蛋白,是鸟苷酸三磷酸酶(GTPases,)家族的一种。它可以调节外泌体膜与受体细胞的融合,有文献报道称RAB4, RAB5和 RAB11主要出现于早期以及回收的核内体中,RAB7 和 RAB9主要出现于晚期的核内体。现有大量的研究发现外泌体中含有40种RAB蛋白。除了RAB蛋白,外泌体中富含具有外泌体膜交换以及融合作用的膜联蛋白(包括膜联蛋白1、2、4、5、6、7、11等)。外泌体膜上富含参与外泌体运输的四跨膜蛋白家族(CD63, CD81 和CD9))、热休克蛋白家族((HSP60, HSP70, HSPA5, CCT2 和HSP90以及一些细胞特异性的蛋白包括A33(结肠上皮细胞来源)、MHC-Ⅱ(抗原提呈细胞来源)、CD86(抗原提呈细胞来源)以及乳凝集素(不成熟的树突状细胞)。其它一些外泌体中的蛋白包括多种的代谢类的酶(GAPDH, 烯醇化酶 1, 醛缩酶 1, PKM2, PGK1, PDIA3, GSTP1,DPP4, AHCY, TPL1, 抗氧化蛋白, P4HB, LDH, 亲环素 A,FASN, MDH1 和CNP)、核糖体蛋白(RPS3)、信号转导因子(黑色素瘤分化相关因子, ARF1, CDC42, 人类红细胞膜整合蛋白, SLC9A3R1)、粘附因子(MFGE8、整合素)、细胞骨架蛋白以及泛素等。

app
公众号
投稿 评论 关灯 顶部