外泌体和微囊泡是几乎所有类型的细胞都能释放的细胞外囊泡(ev)的两大类,在生物液体中非常丰富,ev的分子组成和释放都被认为是受到外界刺激的严格调控的。多项研究一致表明,ev可以在不同的细胞类型之间转移蛋白质、脂质和RNA,从而介导细胞间的通信和信号转导。重要的是,ev中的小非编码rna被认为是在受体细胞中发生的分子事件的主要贡献者。
此外,外泌体和微囊泡中的RNA可以作为多种疾病的非侵入性的生物标志物,包括免疫系统的病理变化。
这篇综述旨在提供ev相关RNA转录组领域的最新技术,以及对以往使NGS测序来描述不同细胞释放的ev中RNA含量的研究进行全面分析。最后,我们强调了与获得纯EV和 EV相关RNA的深度测序 相关的技术挑战。
细胞外囊泡分为三种类型( classifified by their origin and biogenesis):apoptotic bodies (ABs), microvesicles (MVs, also known as shedding vesicles), and exosomes。
大肿瘤小体(LOs)已被确定为第四种类型的ev,它是由肿瘤细胞脱落的膜泡产生的,其大小与 ABs相似。
它们直径大小不一,包含物也有所差异:MVs和外泌体包含各种细胞质和膜解蛋白以及脂质、糖和核酸(9),而ABs可能还包括核组分和细胞器。
marker特征差异:外泌体特征良好的蛋白标记物包括各种四酯蛋白,如CD9、CD63和CD81;而mv包含质膜常见的跨膜蛋白,如整合素和选择素;同时,ab可以通过组蛋白的存在来区分。
在多种早期RT-qPCR技术以及最近的报道中,外泌体和MV中的mRNA、miRNAs和lncRNAs得到了一致的证实。更先进的高通量RNA测序方法的应用揭示了,从生物液体和细胞条件培养基中分离的ev亚群中存在各种其他RNA种类。
这些RNA种类包括snRNA、snoRNA、piRNA、vault RNA、Y-RNA、scRNA、SRP-RNA和7SK-RNA;以及来自rRNA、tRNA、mRNA、lncRNA和各种基因间重复序列的短片段。
TABLE 1 | 使用高通量测序显示EV转录组含量的报告
Nolte-‘tHoen等人通过高通量测序研究了培养过程中免疫细胞释放的EV中的小RNA含量。从EV中分离出的总RNA大部分是小RNA (200 nt),含有少量的18S和28SrRNA。这些短RNA片段主要定位于蛋白质编码区和基因组重复序列,包括SINE、LINE和LTR序列。相反,细胞小RNA群体中存在的大部分序列代表miRNAs,而细胞分泌的EV中miRNAs的比例显著较低。
除了编码mRNA和重复序列的蛋白质外,EV组分还包含所有类型的结构RNA(如vaultRNA、Y-RNA、snRNA、snoRNA、SRP-RNA和tRNA)以及来自lncRNA和假基因的片段。
此外,相对于细胞RNA来说,许多小非编码转录本在EVs中富集,这表明细胞可能选择特定RNA进行细胞外释放。
许多其他研究也证实,由各种培养细胞释放的外泌体中,miRNA 的表达明显低于其他种类的 RNA,这些数据与先前的观察结果一致,即大多数个体外泌体不携带任何生物学上有意义的 miRNA 拷贝。然而,其他的 RNA 测序实验表明,一些细胞系释放的外泌体中相当大比例的小 RNA-seq reads仍然与 miRNA 相对应。
有趣的是,几个独立的小组观察到有15-50% total reads RNA 片段比对到包括逆转录病毒序列,LTR,SINE,和 LINE 序列的基因组重复序列。需要指出的是,作者并没有明确说明在上述研究中使用的小 RNA 文库制备方案是否包括允许捕获5′-OH 和/或3′-磷酸化 RNA 的修饰。因此,目前尚不清楚他们是否真的在相应ev中表征了小RNA的全谱特征。
Jenjaroenpun 等人和 Miranda 等人分别报道了在 MDA-MB 细胞培养液和尿液 EVs 中总 rna (包括长 rna 和小 rna)的测序,并显示了相当比例的 rRNA 读数(87-97%) ,与细胞质中的 rRNA 含量相似。在剩下的3-13% 的片段中,大约一半被标记为蛋白质编码转录本,另一半则标记为非编码 rna 和基因组重复序列。
在Beradrocco等人的另一篇报道中,作者分别使用total RNA和sRNA测序protocols来表征四种不同肝癌细胞系释放的EV中封装的长RNA谱。总RNA片段比对到rRNA的比例最大(32-66%),而基因组重复序列的比例为15-44%,只有11 -25%的片段映射到蛋白编码和非编码RNA基因。对相同EV制剂进行的sRNA测序显示,RNA类别的分布略有不同:rRNA(16-54%)、基因组重复序列(24-40%)和转录组(24-51%)。
在另一项与small RNA测序相平行的全转录组RNA-seq研究中,Lasser等人证实,人类mast和红白血病细胞系释放两个外泌体群体(通过密度梯度浮选分离为HD和LD组分。在HD和LD部分中,长和短RNA cargo明显缺乏相关性,这表明这两个部分的细胞外RNA与不同的通路相关。与LD外泌体相比,HD中mRNA转录本的reads比例更丰富(75 vs. 20%),而非编码RNA的分布则相反(25 vs. 80%)。 在 short RNA libraries,HD部分富集成熟miRNA(23%),而LD部分主要是tRNA(28%)和成熟miRNA(10%)。
另一项研究研究了黑色素瘤细胞在培养过程中释放的三种不同EV类型的RNA含量,并确定了一些非编码RNA在每个EV样本中富集。RNA图谱表明,在相对中等水平的sRNA水平的ABs和MV中存在显著的18S和28S rRNA峰。相比之下,外泌体主要包含小RNA,与ABs和mv相比rRNA更少。尽管EV亚群的miRNA装载量与外泌体略有不同,但大量的miRNA仅在外泌体中被检测到,而在ABs和MV中均不存在,这支持了外泌体富集特异RNA的概念。必须指出的是,与miRNA相比,其他ncRNA种类不仅显著丰富,而且选择性富集在黑素瘤细胞释放的不同EV亚型,这增加了研究细胞外囊泡RNA货物及其功能的复杂性。
到目前为止,只有少数报道对从人类生物液体中分离的EV中的小RNA货物进行了下一代测序。这些研究表明,从人血浆、唾液和尿液中分离出的外泌体含有相当比例的miRNA reads(35-76%)。
上述生物流体EV中其余的RNA种类包括rRNA、lncRNA、tRNA、mRNA、重复区域以及小的非编码RNA如piRNA、snRNA、snoRNA等。值得一提的是,与“几天”细胞条件培养基相比,从生物体液中分离出的外泌体可能含有大量的大蛋白聚集物,包括通常在细胞死亡时释放的装载mirna的AGO复合体。因此,在人类体液中检测到的miRNAs是否确实与ev相关仍有待验证。
有趣的是,对尿液外泌体纯化的总RNA进行深度测序发现,其转录本分布与Cheng等人(48)观察到的完全不同。具体来说,大部分(约87%)的RNA reads被映射到rRNA上,只有约8%的reads被映射到非编码RNA和DNA重复序列上,而剩下的约5%对应于蛋白质编码RNA。相反,Miranda等报道的图谱统计和reads分布与细胞条件培养基中外泌体的总RNA测序结果相似。
综上所述,从上述研究演变而来的集体证据(表1)认为,大多数细胞释放的EV确实携带大量的非编码转录本和蛋白质编码转录本,以及它们的部分,在研究细胞外RNA对受体细胞的影响时应该考虑这些。
EVs RNA载物含量的差异可能部分是因为:
细胞外囊泡(EVs)的研究具有识别未知的细胞和分子机制的潜力,这些机制在细胞间通讯以及器官体内稳态和疾病中发挥着重要作用。外泌体是EV的一种,平均直径约100纳米。外泌体的生物发生涉及其起源的内体,随后与其它细胞内囊泡和细胞器的相互作用产生外泌体的最终内含物。它们的各种成分包括可以反映其起源细胞的核酸、蛋白质、脂质、氨基酸和代谢产物。在各种疾病中,外泌体提供了细胞或组织状态改变的新视角,它们在生物体液中的检测可能提供多组分诊断信息。基于外泌体的物质信息传递能力可以设计基于外泌体的疗法。
原文链接: Cell Metabolism 30, October 1, 2019. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. IF: 22.415
miRNAs可在血清和其他体液中发现,并可作为疾病的生物标志物。更重要的是,分泌型miRNAs,尤其是胞外囊泡(EVs)如外泌体分泌的miRNAs,可能介导不同组织间的旁分泌和内分泌通讯,从而调节基因表达和远程调控细胞功能。分泌型miRNAs受影响时可能会导致组织功能障碍、衰老和疾病。 脂肪组织是循环外泌体miRNA的重要来源。 在许多代谢条件下发生的脂肪组织质量或功能的改变可以导致循环miRNA的改变,从而引起机体一系列的功能改变。
这篇综述回顾了得出这些结论的研究,并讨论了如何为新的研究奠定基础,有助于进一步确定细胞外miRNA作为细胞间通讯的重要介质如何发挥强大作用。
综述分为以下几个部分:
MicroRNAs (miRNAs)是由体内各种细胞产生的约22个nt的调节性非编码小RNA。许多miRNAs在进化过程中高度保守,尽管它们的多样性和数量与机体的复杂性相关。秀丽隐杆线虫的基因组包含437个miRNAs,小鼠超过1500个,而人类的miRNAs在2000到3000个之间(数据来自miRBase,第22版)。许多miRNAs可以无所不在地表达,而其他的则具有组织特异性。这种分布模式是由细胞内miRNA前体的转录和转录后调控所驱动的。
在细胞核中,初级miRNAs(pri-miRNAs)被RNA聚合酶II转录,然后由微处理器复合物(内含核糖核酸内切酶DROSHA及其RNA binding partner DGCR8)或剪接机制的组件进行处理。这导致了约70个nt的pre-miRNAs,被XPO5和Ran GTPase输出到细胞质中。pre-miRNAs被III型核糖核酸内切酶DICER和RNA结合蛋白TRBP与PACT共同处理,产生双链miRNAs duplex。这些miRNAs duplex被加载到RNA诱导的沉默复合体(RISC),在RISC中,Argonaute-2 (AGO2)及其分子伴侣HSC70/HSP90介导双链miRNAs duplex的一条链与其靶mRNA结合(另一条链一般很快被降解了),抑制mRNA的翻译和/或加速mRNA的降解。也有一些miRNAs发挥非常规的相反作用:诱导转录和上调蛋白表达的。不依赖DICER的miRNA生成也有报道,但它们的影响有限。
与mRNAs类似,miRNA表达谱也可作为细胞标志物。例如,miR-122在肝脏中高度表达,占该组织中总miRNA表达量的70%。肌肉细胞中富含miR-1、miR-133a、miR-133b、miR-206、miR-208a、miR-208b、miR-486和miR-499,因此这些miRNAs被称为myomiRs;miR-9和miR-124几乎完全在大脑中表达,后者占了该组织中近50%的miRNA含量;而β细胞是唯一高丰度表达miR-375的细胞。另一方面,一些细胞,如脂肪细胞和干细胞,表达多种miRNAs。
为了理解miRNAs 的表达如何在特定细胞类型中促进该组织的发育和稳态,产生了多种 细胞类型特异性DICER或DGCR8敲除小鼠 。中枢神经系统、胰腺、骨骼肌和心肌的DICER敲除使小鼠不能成活或出现严重的发育缺陷。而肝脏特异性DICER敲除小鼠(LDicerKO)和脂肪细胞特异性敲除小鼠DICER (ADicerKO)或DGCR8 敲除小鼠(ADgcr8KO)在成年之前与野生型的幼鼠难以区分,直到它们开始出现代谢功能障碍。包括LDicerKO小鼠肝脂质沉着症和早发性肝细胞癌;ADicerKO和ADgcr8KO小鼠部分出现脂肪营养不良和胰岛素抵抗。许多表型是因为miRNAs生成受阻改变mRNA半衰期和细胞的翻译功能,但是有一些表型因为其他组织中基因表达和功能的变化引起的二级改变,提示细胞非自治组织miRNAs损失的影响。当ADicerKO小鼠移植正常脂肪组织后,其肝脏基因表达发生逆转,提示这些变化受脂肪组织分泌的miRNAs调控。这种现象产生一个假象:每个细胞的miRNAs是内源性miRNAs产生和外源性miRNAs摄取的总和。要证实这一假设,就需要发展稳健的技术来追踪miRNAs起源和运输。
miRNAs可以通过囊泡转运和蛋白载体的机制被细胞输出和导入是miRNAs具有潜在的细胞和组织间通讯作用的强有力支持。这个概念最早是由Valadi等人在 2007年 提出的,他们在不同细胞系分泌的胞外囊泡(EVs)中识别出大量的mRNAs和miRNAs,这些囊泡可以被其他细胞吸收,然后将mRNAs和miRNAs释放到靶细胞中。 2010年 有研究表明,体液中存在miRNAs,且它们的水平与疾病进展相关。从那时起, 细胞外miRNAs转运机制 被广泛研究,目前已知 的两条主要途径 是: (1)通过EVs主动转运;(2)作为蛋白-miRNA复合物的一部分转运 。此外,可能有一些miRNAs是从破损或受损的细胞中泄漏出来的。
通常,多泡体(MVBs)与质膜融合产生的较小的EVs ( 200nm )称为外泌体(图1),而质膜直接向外出芽和裂变形成的较大EVs ( 200nm )称为微囊泡。直接出芽也能产生类似外泌体的小泡,被称为梭状囊泡或胞外体。
除EVs外,miRNAs还可能在含有蛋白复合物的血液中被运输。这些复合物也可以进入细胞并传递miRNAs来抑制靶mRNA。 低密度(LDL)和高密度(HDL)脂蛋白 都可以在循环中运输miRNAs。在HDLs的情况下,结合的miRNAs可以通过B类I型清道夫受体被受体细胞吸收并在细胞内释放从而调节受体细胞基因表达。
尽管EVs相关和脂蛋白结合的miRNAs在功能上很重要,但它们只是占循环中发现的所有miRNAs的一部分。在一些研究中,在人类血清中发现超过一半的miRNAs可能与核糖核酸蛋白结合,包括argonaute ( AGO2 );然而,其中只有一小部分是通过这种方式运输的。核仁蛋白核磷蛋白1 (nucleophosmin 1, NPM1 )也被发现可以携带和保护细胞外miRNAs不被降解。
生物标志物是一种可以用于疾病检测和/或预后预测的分子。一个好的生物标志物最重要的四个特征是特异性、敏感性、稳定性和非侵入性。 循环miRNAs水平的变化与多种疾病相关,包括2型糖尿病(T2D)、肥胖、心血管疾病(CVD)、癌症、神经退行性疾病等。
这部分内容参考我写的 ChemicalReviews综述 ,那里面有更详细的描述。
脂肪组织的功能除了以甘油三酯的形式储存能量外,还能分泌调控全身新陈代谢的分子来维持机体内环境平衡。这些分子包括脂肪产生的激素(被称为脂肪因子),信号脂质,炎症介质和EVs miRNAs。 ADicerKO小鼠约三分之二的循环miRNAs显著减少,这表明了脂肪组织对循环miRNAs库的显著贡献。 患有各种脂肪营养不良的患者,其循环外泌体miRNAs也有显著改变。重要的是,脂肪组织分泌的miRNAs已经被证明可以到达肝脏和肌肉等器官,并调节该组织基因和蛋白质的表达。
脂肪来源的循环miRNAs以内分泌方式控制代谢稳态的一个例子是2017年Thomou等人通过脂肪来源的miR-99b调控肝脏FGF21。 ADicerKO小鼠循环EVs中的miR-99b水平降低,肝脏中Fgf21 mRNA及3' UTR-报告基因活性的上调,这两种现象可通过往循环中加入含有 miR-99b 的EVs显著纠正。ADicerKO小鼠还显示出其他组织(包括肌肉、β细胞和骨骼)功能障碍,以及全身胰岛素抵抗。 但具体是哪些循环外泌体miRNAs参与了这些表型仍有待确定。
其他研究表明,来源于脂肪EVs的miRNAs也可以发挥旁分泌功能。从含有 miR-16、miR-27a、miR-146b和miR-222 的大脂肪细胞中释放的EVs可以转移到小脂肪细胞中,从而刺激其脂肪生成和脂肪细胞肥大。脂肪细胞分泌这些miRNAs是由游离脂肪酸和H 2 O 2 诱导的,在老年小鼠的血清中这些miRNAs表达上调。这些结果提示促进脂质积累和胰岛素抵抗的信号可能通过脂肪细胞的分泌miRNAs从胰岛素抵抗的脂肪细胞向新形成的脂肪细胞传播。肥胖患者的多种脂肪组织衍生的循环miRNAs(通过含脂肪特异性蛋白FABP4的细胞外颗粒的亲和纯化鉴定)在减肥手术一年后发生了显著变化。估计这些miRNAs可靶向WNT/β-catenin和胰岛素信号通路的成分。减肥手术后差异表达的miRNAs中, let-7a和miR-16 的靶标涉及胰岛素受体信号传导,并且这些miRNAs的水平与支链氨基酸(BCAA)的水平相关,表明它们可能与全身胰岛素抵抗相关。
胰岛细胞不仅可以通过分泌胰岛素和胰高血糖素来控制代谢,还可以通过分泌miRNAs来控制代谢。 初级胰岛细胞和β细胞来源的MIN6细胞在收到胰岛素分泌刺激时可释放特定的miRNAs。例如,与瘦组相比,肥胖ob/ob小鼠的血清、胰岛、肝脏和骨骼肌中 miR-223 表达上调。但其前体pri-miR-223仅在胰岛中升高,这表明其他组织中成熟miR-223水平升高来源与胰岛。miR-223已被证明能与 Glut4 mRNA的3' UTR结合,下调脂肪组织中的GLUT4( 葡萄糖的代谢取决于细胞对葡萄糖的摄取,然而,葡萄糖无法自由通过细胞膜脂质双层结构进入细胞,细胞对葡萄糖的摄入需要借助细胞膜上的葡萄糖转运蛋白(glucose transporters)简称葡萄糖转运体(GLUT)的转运功能才能得以实现。GLUT4就是其中的一种形式 ),上调心肌细胞的GLUT4表达。
miR-155、miR-142-3p和miR-142-5p 可能从T淋巴细胞来源的EVs转移到β细胞,导致炎症通路、细胞凋亡的激活和胰岛素缺乏性糖尿病的发生。
人单核细胞在促炎刺激后分泌的EVs具有高水平的 miR-150 。用这些EVs孵育微血管内皮细胞可下调miR-150靶基因c-Myb,这是一种参与内皮细胞迁移的转录因子。miR-150在体外过表达可诱导内皮细胞迁移,这种作用可通过动脉粥样硬化患者(miR-150水平上调)血浆中的EVs孵育来模拟。来自血管平滑肌细胞的EVs已被证明能够促进 miR-155 向内皮细胞的转移,通过降低紧密连接蛋白的水平来影响内皮屏障的完整性。暴露于氧化的低密度脂蛋白(LDL)的内皮细胞分泌的EVs高表达miR-155,miR-155可以将巨噬细胞的极化从M2样表型转移到促炎性M1样表型。血清和心脏中 miR-126 水平的变化被认为通过影响MCP-1和VCAM-1的表达而在心功能障碍中发挥作用。这些过程改变内皮功能,促进动脉粥样硬化。
越来越多的证据表明,循环EVs可能穿过室管膜层和血脑屏障(BBB)作用于中枢神经系统,从而发挥组织间通讯的作用。老龄大鼠鼻腔给药含 miR-219 的血清EVs可增加中枢神经系统的髓磷脂含量。改变血脑屏障(BBB)通透性的神经退行性疾病可以促进大脑循环miRNAs与血液循环miRNAs的交换。也有证据表明 EVs可以通过胞吞机制穿过血脑屏障 。许多细胞外miRNAs被认为是神经退行性疾病的疾病生物标志物,尽管它们在这些疾病的病理生理学中的作用尚不确定。 衰老会影响下丘脑干细胞分泌EVs miRNAs,而脑室内注射下丘脑干细胞分泌产生的EVs能够延缓下丘脑衰老。(汤老师的Nature文章) 含有miRNAs的EVs也涉及神经元、星形胶质细胞、小胶质细胞和内皮细胞之间的相互作用。2018年,Huang等人发现脑损伤后小胶质细胞EVs 中miR-124水平升高,观察到这个miRNA可以转移到神经元中发挥抑制神经元炎症和促进神经元突触生长的作用。
尽管这个领域还很年轻,但细胞外miRNAs作为细胞间通讯的生理机制的概念却令人兴奋并受到关注,使用细胞外miRNAs更好地对疾病分期以及治疗的前景也是如此。目前,开发合适的工具和标准化的方法来评估miRNAs的运输和交付是该领域的瓶颈,但是在未来几年可能被克服。克服这些障碍将把这一领域带入一个新的高度:特定的细胞外miRNAs可被视为不同生理和病理生理状况的生物标志物,而外泌体或其他EVs中的miRNAs可被用于以一种特定而有效的方式治疗疾病。
感觉这篇综述的质量不如我写的上一篇 ChemicalReviews综述 ,那篇更全面,并且对某些方面描述也更具体。不过这篇也可以学到少量那篇综述没涵盖到的知识点。
原文链接: Cell Metabolism 30, October 1, 2019. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. IF: 22.415
如果你关注了我,希望你与我一起学习,一起成长!❤
关键词:evs外泌体