金仁桃 章孝荣( 安徽农业大学畜牧水产学院 合肥230036 ) �� 自Evans和Kaufman(1981)从延迟着床的胚胎中分离出小鼠胚胎干细胞(embryonic stem cells, ES细胞)以来,ES细胞一直备受人们的关注��〔1〕�。1998年,由基隆公司资助的汤姆森研究小组在《科学》杂志上发表了关于人的ES细胞建立等一系列工作之后,基隆公司的股票更是狂升了6倍;1999年、2000年,干细胞研究两度被美国《科学》杂志推举为21世纪最重要的研究领域;1999年,美国《科学》杂志还将干细胞研究评为当年世界十大科学成就之首。由此足以显示干细胞的魅力,而干细胞之所以如此吸引人们的注意,主要是因为干细胞是一种全能性的细胞,可以自发分化形成多细胞结构,即胚胎小体(embryonic body,EB)。EB含外胚层、内胚层、中胚层三个胚层,胚胎小体继续分化可以形成多种细胞类型,包括血细胞、内皮细胞、肌细胞及神经元等。另外ES细胞在动物克隆生产、转基因动物生产、疾病研究模型及药物生产等诸多方面有着诱人的前景。本文主要就ES细胞在克隆动物生产的应用加以阐述。 �1 ES细胞克隆的理论依据 � ES细胞是从早期胚胎内细胞团(inner cell mass, ICM)和附植后原始生殖细胞(Primordial germ cells, PGCs)分离出来的一种细胞,它具有全能性(totipotenty)或多能性(pluripotency),可以发育为任何一种组织或器官的前体细胞,再由该前体细胞发育成功能细胞。正常的ES细胞可分化为两个子代干细胞,也可以分化一个子代干细胞和一个功能细胞。 这种分化是由干细胞内源性调控(主要是受干细胞内结构蛋白和多肽因子调控)和外源性调控(主要是由周围组织细胞及细胞外基质等调控)所影响。而最近Amato Giaccia 发现氧含量操纵干细胞的分化,为人们进一步利用干细胞提供了有益的提示。另一个重要发现就是Andrew E. Wurmser等发现成熟组织的干细胞仅仅是通过与现存细胞融合而形成其他组织,而非制造新细胞,那么对成熟组织的干细胞利用,将趋于更加谨慎��〔2〕�。这也更加提升了ES细胞的作用。 �ES细胞另外一个特点是它像正常的体细胞一样可以在体外进行增殖、克隆、冷冻、保存而保持不分化。这样就可以为人们提供大量的可利用的ES细胞。如每只实验动物一次可提供5000~6500个PGCs,然后在体外可培养成类ES细胞。现在人们可将ES细胞体外培养传至40~60代而不分化,而这样大量的细胞就为我们利用它奠定了基础。 �ES细胞具有可操作性。在体外人们可以对其进行遗传操作选择,如转基因、基因打靶、配合基因诱捕等一系列技术,再结合核移植技术,生产出人们所希望的动物。 �2 ES细胞克隆的可行性 � 克隆技术的原理是将供体细胞核移入去核的卵母细胞中,通过激活使其重新编程发育,从而产生新个体。目前体细胞克隆相对于ES细胞来说,存在有两个问题:一是体细胞在体外培养易变异。为避免这一缺点,目前较多使用新分离或传代较少的细胞。二是关于选用何部位的细胞。目前人们已使用了乳腺细胞、卵丘细胞、输卵管细胞、皮肤成纤维细胞、子宫上皮细胞、肌肉细胞、支持细胞、肝脏细胞、耳成纤维细胞、初乳中乳腺上皮细胞等。但到目前为止,还没有发现何种体细胞是最适合于核移植的,所用作核移植的细胞有的来自于胎儿,一般是成纤维细胞,也有来源于成体动物的。这主要是因为虽然从理论上讲,机体中的每一个细胞都是从受精卵分裂分化而来,而在机体内通过半保留复制方式,DNA信息被完整的传递下来,但从一个受精卵到机体的亿万个细胞,有些细胞的个别基因可能发生不可逆的丢失或重排,使用这样的细胞作核供体,就无法保证信息的完整性,这也可能是目前细胞克隆中普遍存在的克隆效率低,出生后的死亡或异常的原因之一。ES细胞的核移植虽然也同样需要在去核的卵细胞内重新编程,但是相对于体细胞克隆效率低、妊娠期间易流产来说,ES细胞的克隆效率要高得多,而且ES细胞的重新编程要容易得多。这也正如人们所假设的目前存活的克隆个体所用的供体核大多是源于动物组织的成体干细胞的核而非最终分化的细胞的核〔3〕�。 �随着对ES细胞研究的深入,人们已经在多种动物得到了ES细胞核移植的后代。Teruhiko Wakayama等采用长期传代(30代以上)的小鼠ES细胞克隆出了31只小鼠,其中14只存活〔4〕�; Campbell (1996、1995)分别将绵羊、山羊的类ES注射入去核卵母细胞,获重构胚,经核移植有活羊出生��〔5〕�。Michelle Sims和N.L First(1993)将培养6~101d牛的ICM细胞核移植到去核卵母细胞,卵裂率为70%,囊胚率为24%,经胚胎移植有13头妊娠,出生了4头牛犊��〔6〕�; Stice(1996)将牛的类ES细胞进行核移植,得到重构胚并移入受体牛子宫,发育至45天��〔7〕�;Cibelli利用转基因技术得到生殖系嵌合的牛;Shim(1997)和Piedrahita(1998),利用猪的PGCs建立多能干细胞系,并得到嵌合体猪。 �3 ES细胞克隆的意义 � ES细胞的核移植最基本的意义就在于,如果通过核移植能够产生完整的后代,而且具有和亲代一样的遗传特性,那么它就恰恰证实了ES细胞是具有全能性的一种细胞。ES细胞克隆和体细胞克隆一样,通过得到的大量具有亲代一样遗传特性的供体细胞,再利用核移植技术,可以提高优秀个体的繁殖效率,迅速扩充优秀个体的种群,为畜牧生产作出极大的贡献。 对于珍稀品种或濒临灭绝的物种来说,该项技术提供了一种可以挽救珍稀或濒危物种的机会。利用ES细胞水平上的基因操作相对于受精卵水平上的转基因更加容易,可以得出人们所需求的转基因动物,然后再运用核移植技术,即可得到大量的具有此基因表达的个体,同时这也是创造新物种的绝好机会。由于ES细胞具有自发融合的性质,由此可在细胞水平上操作, 完成新物种的创造,而这种新物种可能是自然交配无法得到的。人们曾将牛、绵羊及人的GH基因先后导入小鼠基因组,得到的转基因小鼠在快速生长期生长速度为对照组的4倍。另外,利用ES细胞核移植还可以一次得到大量同质的后代,为生物学研究提供了很好的模型。 4 目前存在的问题 � 由于ES细胞的发现至今也只有20多年的历史,因此人们对它的了解有限,限制了对它的利用,目前就干细胞的核移植来说,主要存在以下问题: �4.1 核移植技术本身还有许多理论有待完善,目前核移植的效率还很低,而对于像重构胚的发育与着床,核质互作与协调等理论还需要人们作进一步的深入研究。 �4.2 ES细胞建系的技术还不成熟。目前广泛使用的饲养层是小鼠成纤维细胞无限系(STO)或小鼠胚胎成纤维细胞(Primary Mouse Embryo Firbroblasts, PMEF)制备而成,主要是利用其细胞分泌的生长因子FGF和抑制细胞分化的因子LIF共同作用,保持干细胞在体外克隆而不分化,然后加入一些其它的物质。即便如此,目前其建系的效率仍不是很高,特别在国内,能够得到大家畜的类ES的都不是很多,而且得到传代次数较少。人们目前尝试了使用其它的培养基,如大鼠成纤维细胞条件培养基、山羊输卵管上皮培养基、绵羊输卵管上皮培养基、绵羊子宫上皮培养基、山羊子宫上皮培养基、牛的颗粒细胞培养基、牛子宫成纤维细胞培养基、胎牛的睾丸、肾、肝成纤维细胞培养基。Meinecke Tillmann(1996)发现胎牛的成纤维细胞对绵羊的ICM和ES细胞增殖有利。而Piedrahitat等采用猪胎儿成纤维细胞和上皮细胞作为饲养层,结果失败。Strojek等(1990)认为,初步培养囊胚时,使用猪子宫成纤维细胞饲养层可以促进囊胚的贴壁和ICM克隆的形成。此时若用STO作饲养层,尽管猪囊胚可以附着在STO上,但ICM不增殖,但以后的传代只需要STO进行。可见对于饲养层的选择,目前仍有待人们的进一步发现。对于ES细胞的建系,人们还发现,ES细胞必须保持一定的浓度,这是因为ES细胞能够从培养基中摄取营养的同时,也要向培养基中排出自己的分泌和代谢产物和其它一些物质,这些分泌物中,有促进细胞生长的物质,有人就称之为促克隆生长物质。 �ES细胞应用范围是很广的,对于核移植的应用仅是其一部分。例如,利用ES细胞的全能性,进行定向诱导分化,再在细胞水平上进行药物的测试,可以极大提高药物的检测进度;利用ES细胞可建立人类遗传病研究的动物模型等。可以说,对于干细胞的研究方兴未艾。 � 参考文献 �〔1〕Evans M J, Kaufman M H. Establishment in Culture of Pluripotential Cells from mouse embryos〔J〕. Nature, 1981, 292(9): 154~156 �〔2〕Andrew E. Wurmser, Fred H.Gage. Cell fusion causes confusion〔J〕. Nature, 2002,416,485~491 �〔3〕Konrad Hochedlinger, Rudolf Jaenisch. Monoclonal mice generated by nuclear transfer from mature B and T doner cells〔J〕. Nature, 2002,415,1035~1038 �〔4〕Wakayama T, Rodriguez I, Perry AC, et al. Mice cloned from embryonic stem cells〔J〕. Proc Natl Acad Sci USA, 1990,96(26):14984~14989 �〔5〕Campbell.K.H.S, Mc whiir,J, Riechie.W.A, et al. Sheep cloned by nuclear transfer from a cuctured cell line〔J〕. Natrue,1996,38(7):64~66 �〔6〕Sims M.M, FirsA NI. Production of fetuses from totipotent cultured bovine inner cell mass cells〔J〕. Theriogenology, 1993,39:313 �〔7〕Stice SL, strolchonko NS.Pluriopotent bovine embryonic cell lines directed embryonic development following nuclear transfer biology of Reproduction〔J〕. Theriogenology, 1996,54:100~110
获得一定代次的小鼠ES细胞。
通过培养新生鼠脑神经细胞,探讨适合神经细胞生长的培养条件,为小鼠ES细胞神经向定向诱导分化及其在脑病模型上的应用奠定基础。
胚胎干细胞(Embryonicstemcell,ESCs,简称ES、EK或ESC细胞)是早期胚胎(原肠胚期之前)或原始性腺中分离出来的一类细胞,它具有体外培养无限增殖、自我更新和多向分化的特性。
肯定不是。
饲养层是一层细胞,用于提供干细胞培养所需的物质(教材中说的很清楚)。
细胞培养液的成分有:糖、氨基酸、促生长因子、无机盐、微量元素、血清或血浆.
干细胞相关的培养液都必须在5%CO2的气体环境中培养使用。否则会对细胞产生影响。气体是哺乳动物细胞培养生存必需条件之一,所需气体主要有氧气和二氧化碳。氧气参与三羧酸循环,产生供给细胞生长增殖的能量和合成细胞生长所需用的各种成分。开放培养时一般把细胞置于95%空气加5%二氧化碳混合气体环境中。二氧化碳既是细胞代谢产物也是细胞生长繁殖所需成分,它在细胞培养中的主要作用在于维持培养基的pH值。大多数细胞的适宜pH为7.2-7.4,偏离这一范围对细胞培养将产生有害的影响。一般情况下,细胞耐酸性比耐碱性大一些,在偏酸环境中更利于细胞生长。
美国加州大学洛杉矶分校医学院的马克·海德里克博士说,“干细胞就像小孩,长大后可以从事各种职业。”“孩子可能成为消防队员,也可能成为医生或水管工,这取决于生活(或者说环境)对他们的影响。同样,通过改变这些干细胞的环境,它们也可以发育成各种组织。”
一般来讲,干细胞可分为四种类型:
胚胎干细胞:从人类胚胎中得到的干细胞
胎儿干细胞:从流产胎儿的组织中获取的干细胞
脐带干细胞:从脐带中得到的干细胞
成人干细胞:从成人组织中获取的干细胞
胚胎干细胞和胎儿干细胞可形成的细胞种类多于成人干细胞。2001年4月,美国加州大学洛杉矶分校和匹兹堡大学的研究人员在吸脂手术病人吸出的脂肪中发现了干细胞。此前只在骨髓、大脑组织和胎儿组织这些引发伦理道德问题的来源中发现了干细胞。脂肪干细胞可以发育成其他类型的特定细胞,包括肌肉、骨骼和软骨,但可发育成多少种其他类型的细胞尚不清楚。
分化后的细胞,往往由于高度分化而完全丧失了再分化的能力,这样的细胞最终将衰老和死亡。然而,动物体在发育的过程中,体内却始终保留了一部分未分化的细胞,这就是干细胞。干细胞又叫做起源细胞、万用细胞,是一类具有自我更新和分化潜能的细胞。可以这样说,动物体就是通过干细胞的分裂来实现细胞的更新,从而保证动物体持续生长发育的。
干细胞根据其分化潜能的大小,可以分为两类:全能干细胞和组织干细胞。前者可以分化、发育成完整的动物个体,后者则是一种或多种组织器官的起源细胞。人的胚胎干细胞可以发育成完整的人,所以属于全能干细胞。
早在19世纪,发育生物学家就知道,卵细胞受精后很快就开始分裂,先是一个受精卵分裂成两个细胞,然后继续分裂,直至分裂成有16至32个细胞的细胞团,叫做桑椹胚。这时如果将组成桑椹胚的细胞一一分开,并分别植入到母体的子宫内,则每个细胞都可以发育成一个完整的胚胎。这种细胞就是胚胎干细胞,属于全能干细胞。骨髓、脐带、胎盘和脂肪中则可以获取组织干细胞。每个人的体内都有一些终生与自己相伴的干细胞。但是,人的年龄越大,干细胞就越少。为了弥补干细胞的不足,一些科学家建议从胚胎或胎儿以及其他动物身上获取干细胞。进行培养和研究。
干细胞的用途非常广泛,涉及到医学的多个领域。目前,科学家已经能够在体外鉴别、分离、纯化、扩增和培养人体胚胎干细胞,并以这样的干细胞为“种子”,培育出一些人的组织器官。干细胞及其衍生组织器官的广泛临床应用,将产生一种全新的医疗技术,也就是再造人体正常的甚至年轻的组织器官,从而使人能够用上自己的或他人的干细胞或由干细胞所衍生出的新的组织器官,来替换自身病变的或衰老的组织器官。假如某位老年人能够使用上自己或他人婴幼儿时期或者青年时期保存起来的干细胞及其衍生组织器官,那么,这位老年人的寿命就可以得到明显的延长。美国《科学》杂志于1999年将干细胞研究列为世界十大科学成就的第一,排在人类基因组测序和克隆技术之前。
新加坡国立大学医院和中央医院通过脐带血干细胞移植手术,根治了一名因家族遗传而患上严重的地中海贫血症的男童,这是世界上第一例移植非亲属的脐带血干细胞而使患者痊愈的手术。医生们认为,脐带血干细胞移植手术并不复杂,就像给患者输血一样。由于脐带血自身固有的特性,使得用脐带血干细胞进行移植比用骨髓进行移植更加有效。现在,利用造血干细胞移植技术已经逐渐成为治疗白血病、各种恶性肿瘤放化疗后引起的造血系统和免疫系统功能障碍等疾病的一种重要手段。科学家预言,用神经干细胞替代已被破坏的神经细胞,有望使因脊髓损伤而瘫痪的病人重新站立起来;不久的将来,失明、帕金森氏综合症、艾滋病、老年性痴呆、心肌梗塞和糖尿病等绝大多数疾病的患者,都有望借助干细胞移植手术获得康复。
同胚胎干细胞相比,成人身体上的干细胞只能发育成二十多种组织器官,而胚胎干细胞则能发育成几乎所有的组织器官。但是,如果从胚胎中提取干细胞,胚胎就会死亡。因此,伦理道理问题就成为当前胚胎干细胞研究的最大问题之一。美国政府明确反对破坏新的胚胎以获取胚胎干细胞,美国众议院甚至提出全面禁止胚胎干细胞克隆研究的法案。美国的一些科学家则对此提出了尖锐的批评,他们认为,将干细胞用于医学研究,在减轻患者痛苦方面很有潜力。如果浪费这样一个绝好的机会,结果将是悲剧性的。
随着基因工程、胚胎工程、细胞工程等各种生物技术的快速发展,按照一定的目的,在体外人工分离、培养干细胞已成为可能,利用干细胞构建各种细胞、组织、器官作为移植器官的来源,这将成为干细胞应用的主要方向。
首先得明确一个概念,不是只有干细胞具备分裂能力,很多已分化细胞都具备分裂能力,只不过干细胞的自我增值和分化能力是其重要特征。
通过最具活性的细胞,可以提高人体整个器官功能, 改善机能老化状态, 一般表现为:
1、刚开始皮肤变光滑、润泽, 肤色变白;1月左右细小皱纹减轻、变浅, 面部色斑变淡;
2、头发可出现增多、白转黑现象, 全松弛的皮肤开始变得紧致以及肌肉变得紧实, 女性乳房、臀部变得紧致富有弹性;
3、免疫力增强, 原来易感冒的人不易再感冒;
4、睡眠改善, 不容易疲劳, 精力充沛, 记忆力好转;
5、肌肉变得有力, 腰膝酸软疼痛症状减轻;
6、食欲好转, 腹胀、便秘现象减轻甚至消失, 肠炎症状好转;
7、男性功能改善, 前列腺肥大增生减轻好转, 女性卵巢早衰患者月经的恢复, 更年期症状的改善, 女性乳房及臀部变得紧致有弹性, 乳晕由黑转红现象;
8、代谢率提高, 减肥不再困难, 体态发生变化, 肥胖的人身材变的苗条, 脂肪重新分布, 机体年轻态的恢复;
9、全面提高人体机能, 改善人体退变现状, 使机体保持青春活力和年轻状态;
10、血脂、血糖、血压等体检指标可能出现改善的情形。
关键词:干细胞培养及其应用视频