首页 > 外泌体 >正文

外泌体mir-155-5p(外泌体是什么东西)

2022-12-17 03:51:08 作者:max
评论:0

本文目录一览:

miRNA作为临床诊断标记物具有哪些优点

你问:miRNA作为临床诊断标记物具有哪些优点;1、临床诊断标记物miRNA的异常表达与卵巢癌的演进有着密切联系。循环miRNA在血清中稳定存在,具有较好的组织特异性,成为卵巢癌无创诊断的一个新靶标。

2、循环miRNA是液体活检研究领域的一个重要方向,尤其在外泌体的概念发展以后,丰富了对循环miRNA的认识和检测方式。现对循环miRNA在卵巢癌中的生物学和临床诊断标记物意义进行综述。

3、研究发现部分血清miRNA与胃癌密切相关,但对早期胃癌的研究较少见.目的:探讨血清miR-1、miR-20a、miR-27a、miR-34a、miR-423-5p表达在胃癌尤其是早期胃癌诊断中临床诊断标记物的价值和方法。

4、采用临床诊断标记物qRT-PCR法检测180例胃癌患者(包括149例进展期胃癌和31例早期胃癌)、49例癌前变化患者、57名健康对照者的血清miR-1、miR-20a、miR-27a、miR-34a、miR-423-Sp表达.采用ROC曲线判断miRNA的诊断敏感性和特异性.结果:胃癌患者血清miR-1、miR-20a、miR-34a、miR-423-5p表达显著升高(P<0.05),ROC曲线下面积(AUG)分别为0.894

9、0.814

8、0.6448、0.589

7,四者联合的AUC为0.921

1,敏感性和特异性分别为85.8%和83.3%.早期胃癌中miR-1和miR-20a的表达明显升高(P<0.05),AUC分别为0.813

8和0.774

2,两者联合的AUC为0.865

3,敏感性和特异性分别为80.5%和83.6%.进展期胃癌中miR-1的表达显著高于早期胃癌(P

=0.012

1),且术后表达明显降低(P

=0.018

5)。

6、结论:miR-1、miR-20a、miR-34a、miR-423-5p可作为肿瘤标记物对胃癌进行诊断,miR-1、miR-20a可作为诊断早期胃癌的标记物.

基因的转录因子是细胞内的信号分子吗

转录因子(Transcription factors,TF)。

真核生物转录起始过程十分复杂,往往需要多种蛋白因子的协助,转录因子与RNA聚合酶Ⅱ形成转录起始复合体,共同参与转录起始的过程。根据转录因子的作用特点可分为二类;第一类为普遍转录因子,它们与RNA聚合酶Ⅱ共同组成转录起始复合体时,转录才能在正确的位置开始。除TFⅡD以外,还发现TFⅡA,TFⅡB,TFⅡF,TFⅡE,TFⅡH等,它们在转录起始复合体组装的不同阶段起作用。第二类转录因子为组织细胞特异性转录因子,这些TF是在特异的组织细胞或是受到一些类固醇激素\生长因子或其它刺激后,开始表达某些特异蛋白质分子时,才需要的一类转录因子。

中文名

转录因子

外文名

Transcription factors

TF

类别

生物名词

实质

蛋白质

相关视频

13.2万播放|00:56

酵母单杂筛转录因子

瑞源酵母功能基因组学

6.4万播放|01:40

【百秒观科研 关于抑郁症治疗,高校科研团队有新成果】近日,山东大学基础医学院于书彦教授团队在Molecular Therapy上发表了关于抑郁症的最新研究成果。抑郁症是全世界普遍面临的严峻医学问题和社会问题,严重影响和降低人们的生存质量。团队研究发现,小胶质细胞来源的外泌体中携带的miR-146a-5p,通过靶向核转录因子Krüppel-like factor 4(KLF4),抑制神经干/祖细胞的

中国青年网

简介组成转录调控区转录抑制区作用TA说

简介

RNA的转录合成从化学角度来讲类似于DNA的复制,多核苷酸链的合成都是以5’→3’的方向,在3’-OH末端与加入的核苷酸形成磷酸二酯键,但是,由于复制和转录的目的不同,转录又具有其特点:(1)对于一个基因组来说,

为什么运动可以促进外泌体的释放?有类似Ca+的这种机制详细解答的文献吗

维持着生命的运转。

心脏又是如此脆弱,各种因素(如机械作用、有毒物质、吸烟、酗酒、不良情绪等)都能让它受伤,每年因心脏相关疾病死亡的人数超过千万。

不过,作为生命力量之源的心脏,人类也有多种方式来保护它,其中最重要的方式之一就是——运动。

最近,中国第四军医大学的高峰和王立峰教授带领的联合团队发现,长期锻炼的人动脉血管会分泌更多的miR-342-5p(一种非编码RNA),并通过外泌体运送到心脏,保护受损的心肌细胞,减少心肌梗死的风险。

这项研究首次发现了miR-342-5p对心肌细胞的保护作用,并揭示了这种保护作用的完整机制,对缺血性心脏病的预防和康复有重要意义。相关研究发表在著名学术期刊Circulation Research上[1],论文的第一作者是Zuoxu Hou和 Xinghua Qin两位同学。

高峰教授

小时候,父亲就对奇点糕说,运动可以让你拥有一颗强大的心脏。而奇点糕也从小就养成了日常锻炼的习惯,无论生病或者精神萎靡时,都喜欢通过运动来恢复状态。当奇点糕努力提高了自己的知识水平后,就越发喜欢运动了。因为有无数的科学证据表明运动可以减肥、壮骨、防癌、防痴呆等。

不仅如此,对于人类健康的最大威胁——心血管疾病,运动的益处也是显而易见的。有研究表明,运动对受损的心脏有直接的保护作用,提高人类心脏病发作时的存活率[4],尤其是在发生“心肌缺血再灌注损伤”后。

1960年,有人在狗狗身上观察到一个现象:当心肌因阻塞而缺血后又恢复供血,会更加严重地损伤心肌组织,这个过程被称为“心肌缺血再灌注损伤(MI/R)“[2,3]。MI/R可能导致心肌细胞大面积坏死,引发严重的心肌梗死,每个人都可能遇到。

高峰教授团队曾在小鼠体内发现,长期运动能防止MI/R导致的心肌细胞凋亡,减少心肌梗死的风险[5]。但是,目前人们还不清楚运动到底是如何保护心肌细胞的。

心肌梗塞对心脏损伤很大

近段时间,外泌体成为医学研究的热点。很多细胞都能分泌一种小的(30-100 nm)内源性膜囊泡,里面包含蛋白质、mRNA和非编码RNA(如miRNA)等,在全身组织和器官之间传递信号[6]。最近有研究发现,在人类进行运动后,外泌体会增加,对心血管系统有益处[7]。

研究人员推测,运动对心肌细胞的保护作用可能是通过外泌体介导的。

他们让一组小鼠进行游泳训练,每天两次,持续4周;并以一组不运动的小鼠做对照。等最后一次训练课程结束24小时后,让小鼠发生“心肌缺血再灌注损伤”(MI/R)。检测发现,相比对照组,锻炼过的小鼠心肌梗死面积更小,血清中乳酸脱氢酶水平更低。(乳酸脱氢酶主要存在于心肌细胞以及肝、细胞中,因此乳酸脱氢酶水平偏高,可以作为心肌受损的指标)

随后,他们从锻炼组和不运动组的小鼠血液中分离出了外泌体,将这两种外泌体分别与受损的心肌细胞共孵育。发现锻炼组小鼠的外泌体能够大幅降低受损心肌细胞的凋亡,而不运动组小鼠的外泌体却没有这种效果。(受损的心肌细胞通过“有氧/无氧”过程进行诱导损伤)

左:心肌细胞吸收外泌体。右:“锻炼”的外泌体抑制心肌细胞凋亡

接着,将这些外泌体注射到正常小鼠心脏中,48小时后再对他们进行MI/R。检测发现锻炼组来源的外泌体,能够大幅减少小鼠的心肌梗死面积,改善心脏的功能,提高左室发展压最大变化速率(±dp/dtmax),降低左室舒张末压(LVEDP)等。

人体中的结果也一样。研究人员分别征集了16名健康的男性学生运动员,让他们进行1年的赛艇训练(每天1-2小时,每周6天);又征集16名不训练的男性学生志愿者。

在最后一次训练结束的24小时后,收集他们的血液样本分离外泌体,分别与受损的心肌细胞进行共孵育。发现锻炼组学生的外泌体能抑制细胞凋亡,降低乳酸脱氢酶的释放,并提高细胞的存活率。

人体来源的外泌体效果同样不俗

这些结果表明,长期运动后产生的外泌体,确实能够保护受损的心肌细胞。

不过,到底是外泌体中的哪种成分在起作用呢?联合团队对外泌体进行测序,发现训练组和不运动组的小鼠外泌体miRNA有很大差别,他们从中挑选了11种在锻炼组外泌体中被明显上调的miRNA,分别在受损的心肌细胞中进行测试。

实验结果显示,一种叫miR-342-5p的miRNA能够明显抑制细胞凋亡,降低乳酸脱氢酶的释放,并提高细胞的存活率。检测志愿者的外泌体后,也发现锻炼组外泌体的miR-342-5p含量是对照组的1.8倍。

随后,研究人员又在小鼠中通过检验miR-342-5p的功能,证实miR-342-5p对心肌细胞的具有保护作用。看来就是它了,心脏的守护神——miR-342-5p。

不过,这个miR-342-5p到底是怎么产生的呢?之前有研究发现,运动会增强血管与血流之间的剪切力,诱导血管内皮细胞产生细胞因子,对人体有益[8]。研究人员对动脉血管内皮细胞施加剪切力,发现确实能促进这些细胞产生miR-342-5p。

血流变化可以改变剪切力

那miR-342-5p是通过什么方式保护心脏的呢?研究人员对miR-342-5p起作用的机制进行研究,发现其能抑制Caspase 9 和 Jnk2蛋白的水平,并增强Akt蛋白的磷酸化[9,10]。这些作用最终都会抑制细胞凋亡,防止心肌细胞因MI/R而死亡,从而降低心肌梗死的危害。

运动保护心脏的作用机制

这个研究清晰地揭示了长期运动保护心脏的完整机制,并首次发现了miR-342-5p的重要作用,对缺血性心脏病的预防和治疗,具有潜在的临床应用价值。

而对于大多数现在心脏还健康的人,不用奇点糕多说了吧?既然心很容易受伤,那就多爱护它,那就让它更强大吧~

有氧运动的第一作用,就是增强心肺功能。

编辑神叨叨

有时候,人们会很庆幸对于人体至关重要的心脏很难患癌症,少了一种致命的疾病。可是转念一想,心脏很难患癌的重要原是因为心肌细胞不能再生,这也意味着心脏受损很难修复,而每年心脏相关的疾病杀死的人数,超过了全身所有类型肿瘤造成的死亡人数的总和。

当然,心肌细胞无法再生是自然长期进化的结果,相对心肌细胞能再生的低等生物,恐怕是有其优势的。而且,对于生物的进化,更多是遵循阻力而非经济最优原则。

细胞外miRNAs:从生物标志物到生理和疾病的调节因子

原文链接: Cell Metabolism 30, October 1, 2019. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. IF: 22.415

miRNAs可在血清和其他体液中发现,并可作为疾病的生物标志物。更重要的是,分泌型miRNAs,尤其是胞外囊泡(EVs)如外泌体分泌的miRNAs,可能介导不同组织间的旁分泌和内分泌通讯,从而调节基因表达和远程调控细胞功能。分泌型miRNAs受影响时可能会导致组织功能障碍、衰老和疾病。 脂肪组织是循环外泌体miRNA的重要来源。 在许多代谢条件下发生的脂肪组织质量或功能的改变可以导致循环miRNA的改变,从而引起机体一系列的功能改变。

这篇综述回顾了得出这些结论的研究,并讨论了如何为新的研究奠定基础,有助于进一步确定细胞外miRNA作为细胞间通讯的重要介质如何发挥强大作用。

综述分为以下几个部分:

MicroRNAs (miRNAs)是由体内各种细胞产生的约22个nt的调节性非编码小RNA。许多miRNAs在进化过程中高度保守,尽管它们的多样性和数量与机体的复杂性相关。秀丽隐杆线虫的基因组包含437个miRNAs,小鼠超过1500个,而人类的miRNAs在2000到3000个之间(数据来自miRBase,第22版)。许多miRNAs可以无所不在地表达,而其他的则具有组织特异性。这种分布模式是由细胞内miRNA前体的转录和转录后调控所驱动的。

在细胞核中,初级miRNAs(pri-miRNAs)被RNA聚合酶II转录,然后由微处理器复合物(内含核糖核酸内切酶DROSHA及其RNA binding partner DGCR8)或剪接机制的组件进行处理。这导致了约70个nt的pre-miRNAs,被XPO5和Ran GTPase输出到细胞质中。pre-miRNAs被III型核糖核酸内切酶DICER和RNA结合蛋白TRBP与PACT共同处理,产生双链miRNAs duplex。这些miRNAs duplex被加载到RNA诱导的沉默复合体(RISC),在RISC中,Argonaute-2 (AGO2)及其分子伴侣HSC70/HSP90介导双链miRNAs duplex的一条链与其靶mRNA结合(另一条链一般很快被降解了),抑制mRNA的翻译和/或加速mRNA的降解。也有一些miRNAs发挥非常规的相反作用:诱导转录和上调蛋白表达的。不依赖DICER的miRNA生成也有报道,但它们的影响有限。

与mRNAs类似,miRNA表达谱也可作为细胞标志物。例如,miR-122在肝脏中高度表达,占该组织中总miRNA表达量的70%。肌肉细胞中富含miR-1、miR-133a、miR-133b、miR-206、miR-208a、miR-208b、miR-486和miR-499,因此这些miRNAs被称为myomiRs;miR-9和miR-124几乎完全在大脑中表达,后者占了该组织中近50%的miRNA含量;而β细胞是唯一高丰度表达miR-375的细胞。另一方面,一些细胞,如脂肪细胞和干细胞,表达多种miRNAs。

为了理解miRNAs 的表达如何在特定细胞类型中促进该组织的发育和稳态,产生了多种 细胞类型特异性DICER或DGCR8敲除小鼠 。中枢神经系统、胰腺、骨骼肌和心肌的DICER敲除使小鼠不能成活或出现严重的发育缺陷。而肝脏特异性DICER敲除小鼠(LDicerKO)和脂肪细胞特异性敲除小鼠DICER (ADicerKO)或DGCR8 敲除小鼠(ADgcr8KO)在成年之前与野生型的幼鼠难以区分,直到它们开始出现代谢功能障碍。包括LDicerKO小鼠肝脂质沉着症和早发性肝细胞癌;ADicerKO和ADgcr8KO小鼠部分出现脂肪营养不良和胰岛素抵抗。许多表型是因为miRNAs生成受阻改变mRNA半衰期和细胞的翻译功能,但是有一些表型因为其他组织中基因表达和功能的变化引起的二级改变,提示细胞非自治组织miRNAs损失的影响。当ADicerKO小鼠移植正常脂肪组织后,其肝脏基因表达发生逆转,提示这些变化受脂肪组织分泌的miRNAs调控。这种现象产生一个假象:每个细胞的miRNAs是内源性miRNAs产生和外源性miRNAs摄取的总和。要证实这一假设,就需要发展稳健的技术来追踪miRNAs起源和运输。

miRNAs可以通过囊泡转运和蛋白载体的机制被细胞输出和导入是miRNAs具有潜在的细胞和组织间通讯作用的强有力支持。这个概念最早是由Valadi等人在 2007年 提出的,他们在不同细胞系分泌的胞外囊泡(EVs)中识别出大量的mRNAs和miRNAs,这些囊泡可以被其他细胞吸收,然后将mRNAs和miRNAs释放到靶细胞中。 2010年 有研究表明,体液中存在miRNAs,且它们的水平与疾病进展相关。从那时起, 细胞外miRNAs转运机制 被广泛研究,目前已知 的两条主要途径 是: (1)通过EVs主动转运;(2)作为蛋白-miRNA复合物的一部分转运 。此外,可能有一些miRNAs是从破损或受损的细胞中泄漏出来的。

通常,多泡体(MVBs)与质膜融合产生的较小的EVs ( 200nm )称为外泌体(图1),而质膜直接向外出芽和裂变形成的较大EVs ( 200nm )称为微囊泡。直接出芽也能产生类似外泌体的小泡,被称为梭状囊泡或胞外体。

除EVs外,miRNAs还可能在含有蛋白复合物的血液中被运输。这些复合物也可以进入细胞并传递miRNAs来抑制靶mRNA。 低密度(LDL)和高密度(HDL)脂蛋白 都可以在循环中运输miRNAs。在HDLs的情况下,结合的miRNAs可以通过B类I型清道夫受体被受体细胞吸收并在细胞内释放从而调节受体细胞基因表达。

尽管EVs相关和脂蛋白结合的miRNAs在功能上很重要,但它们只是占循环中发现的所有miRNAs的一部分。在一些研究中,在人类血清中发现超过一半的miRNAs可能与核糖核酸蛋白结合,包括argonaute ( AGO2 );然而,其中只有一小部分是通过这种方式运输的。核仁蛋白核磷蛋白1 (nucleophosmin 1, NPM1 )也被发现可以携带和保护细胞外miRNAs不被降解。

生物标志物是一种可以用于疾病检测和/或预后预测的分子。一个好的生物标志物最重要的四个特征是特异性、敏感性、稳定性和非侵入性。 循环miRNAs水平的变化与多种疾病相关,包括2型糖尿病(T2D)、肥胖、心血管疾病(CVD)、癌症、神经退行性疾病等。

这部分内容参考我写的 ChemicalReviews综述 ,那里面有更详细的描述。

脂肪组织的功能除了以甘油三酯的形式储存能量外,还能分泌调控全身新陈代谢的分子来维持机体内环境平衡。这些分子包括脂肪产生的激素(被称为脂肪因子),信号脂质,炎症介质和EVs miRNAs。 ADicerKO小鼠约三分之二的循环miRNAs显著减少,这表明了脂肪组织对循环miRNAs库的显著贡献。 患有各种脂肪营养不良的患者,其循环外泌体miRNAs也有显著改变。重要的是,脂肪组织分泌的miRNAs已经被证明可以到达肝脏和肌肉等器官,并调节该组织基因和蛋白质的表达。

脂肪来源的循环miRNAs以内分泌方式控制代谢稳态的一个例子是2017年Thomou等人通过脂肪来源的miR-99b调控肝脏FGF21。 ADicerKO小鼠循环EVs中的miR-99b水平降低,肝脏中Fgf21 mRNA及3' UTR-报告基因活性的上调,这两种现象可通过往循环中加入含有 miR-99b 的EVs显著纠正。ADicerKO小鼠还显示出其他组织(包括肌肉、β细胞和骨骼)功能障碍,以及全身胰岛素抵抗。 但具体是哪些循环外泌体miRNAs参与了这些表型仍有待确定。

其他研究表明,来源于脂肪EVs的miRNAs也可以发挥旁分泌功能。从含有 miR-16、miR-27a、miR-146b和miR-222 的大脂肪细胞中释放的EVs可以转移到小脂肪细胞中,从而刺激其脂肪生成和脂肪细胞肥大。脂肪细胞分泌这些miRNAs是由游离脂肪酸和H 2 O 2 诱导的,在老年小鼠的血清中这些miRNAs表达上调。这些结果提示促进脂质积累和胰岛素抵抗的信号可能通过脂肪细胞的分泌miRNAs从胰岛素抵抗的脂肪细胞向新形成的脂肪细胞传播。肥胖患者的多种脂肪组织衍生的循环miRNAs(通过含脂肪特异性蛋白FABP4的细胞外颗粒的亲和纯化鉴定)在减肥手术一年后发生了显著变化。估计这些miRNAs可靶向WNT/β-catenin和胰岛素信号通路的成分。减肥手术后差异表达的miRNAs中, let-7a和miR-16 的靶标涉及胰岛素受体信号传导,并且这些miRNAs的水平与支链氨基酸(BCAA)的水平相关,表明它们可能与全身胰岛素抵抗相关。

胰岛细胞不仅可以通过分泌胰岛素和胰高血糖素来控制代谢,还可以通过分泌miRNAs来控制代谢。 初级胰岛细胞和β细胞来源的MIN6细胞在收到胰岛素分泌刺激时可释放特定的miRNAs。例如,与瘦组相比,肥胖ob/ob小鼠的血清、胰岛、肝脏和骨骼肌中 miR-223 表达上调。但其前体pri-miR-223仅在胰岛中升高,这表明其他组织中成熟miR-223水平升高来源与胰岛。miR-223已被证明能与 Glut4 mRNA的3' UTR结合,下调脂肪组织中的GLUT4( 葡萄糖的代谢取决于细胞对葡萄糖的摄取,然而,葡萄糖无法自由通过细胞膜脂质双层结构进入细胞,细胞对葡萄糖的摄入需要借助细胞膜上的葡萄糖转运蛋白(glucose transporters)简称葡萄糖转运体(GLUT)的转运功能才能得以实现。GLUT4就是其中的一种形式 ),上调心肌细胞的GLUT4表达。

miR-155、miR-142-3p和miR-142-5p 可能从T淋巴细胞来源的EVs转移到β细胞,导致炎症通路、细胞凋亡的激活和胰岛素缺乏性糖尿病的发生。

人单核细胞在促炎刺激后分泌的EVs具有高水平的 miR-150 。用这些EVs孵育微血管内皮细胞可下调miR-150靶基因c-Myb,这是一种参与内皮细胞迁移的转录因子。miR-150在体外过表达可诱导内皮细胞迁移,这种作用可通过动脉粥样硬化患者(miR-150水平上调)血浆中的EVs孵育来模拟。来自血管平滑肌细胞的EVs已被证明能够促进 miR-155 向内皮细胞的转移,通过降低紧密连接蛋白的水平来影响内皮屏障的完整性。暴露于氧化的低密度脂蛋白(LDL)的内皮细胞分泌的EVs高表达miR-155,miR-155可以将巨噬细胞的极化从M2样表型转移到促炎性M1样表型。血清和心脏中 miR-126 水平的变化被认为通过影响MCP-1和VCAM-1的表达而在心功能障碍中发挥作用。这些过程改变内皮功能,促进动脉粥样硬化。

越来越多的证据表明,循环EVs可能穿过室管膜层和血脑屏障(BBB)作用于中枢神经系统,从而发挥组织间通讯的作用。老龄大鼠鼻腔给药含 miR-219 的血清EVs可增加中枢神经系统的髓磷脂含量。改变血脑屏障(BBB)通透性的神经退行性疾病可以促进大脑循环miRNAs与血液循环miRNAs的交换。也有证据表明 EVs可以通过胞吞机制穿过血脑屏障 。许多细胞外miRNAs被认为是神经退行性疾病的疾病生物标志物,尽管它们在这些疾病的病理生理学中的作用尚不确定。 衰老会影响下丘脑干细胞分泌EVs miRNAs,而脑室内注射下丘脑干细胞分泌产生的EVs能够延缓下丘脑衰老。(汤老师的Nature文章) 含有miRNAs的EVs也涉及神经元、星形胶质细胞、小胶质细胞和内皮细胞之间的相互作用。2018年,Huang等人发现脑损伤后小胶质细胞EVs 中miR-124水平升高,观察到这个miRNA可以转移到神经元中发挥抑制神经元炎症和促进神经元突触生长的作用。

尽管这个领域还很年轻,但细胞外miRNAs作为细胞间通讯的生理机制的概念却令人兴奋并受到关注,使用细胞外miRNAs更好地对疾病分期以及治疗的前景也是如此。目前,开发合适的工具和标准化的方法来评估miRNAs的运输和交付是该领域的瓶颈,但是在未来几年可能被克服。克服这些障碍将把这一领域带入一个新的高度:特定的细胞外miRNAs可被视为不同生理和病理生理状况的生物标志物,而外泌体或其他EVs中的miRNAs可被用于以一种特定而有效的方式治疗疾病。

感觉这篇综述的质量不如我写的上一篇 ChemicalReviews综述 ,那篇更全面,并且对某些方面描述也更具体。不过这篇也可以学到少量那篇综述没涵盖到的知识点。

原文链接: Cell Metabolism 30, October 1, 2019. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. IF: 22.415

如果你关注了我,希望你与我一起学习,一起成长!❤

什么是NK细胞外泌体?

世界上有成千上万种不同的疾病,不过所有的疾病都可以归因于身体细胞功能出现了故障。 健康并不是一种偶然,而是一种选择 ,我们每个人都可以选择健康!

糖尿病是一种以高血糖为特征的代谢性疾病,是现代社会典型的“富贵病”之一。 Ⅱ型糖尿病(T2DM) 的病理相对I型糖尿病更为复杂,主要是胰岛β细胞功能障碍和不同程度的胰岛素抵抗,导致无法维持血糖稳态。典型病例可出现多尿、多饮、多食、消瘦等表现,即 “三多一少"症状 ,导致各种组织,特别是眼、肾、心脏、血管、神经的慢性损害和功能障碍,最终可能发展为慢性并发症。

1、 II型糖尿病与胰岛素抵抗

现代社会物质极大丰富,各种美食不停刺激我们的味蕾,很少有小伙伴能抵挡美食的诱惑。然而随之而来的是 肥胖症 的发病率迅速升高,据统计,中国已成为肥胖人口最多的国家。而 肥胖则是Ⅱ型糖尿病的重要危险因素 。体内过多脂肪导致的游离脂肪酸会引起胰岛素抵抗,使脂肪细胞、肌肉细胞和肝细胞对胰岛素的敏感性降低,并导致胰岛素信号传导失调和葡萄糖、脂肪和蛋白质的代谢紊乱 ; 随之而来的高血糖症又促使胰腺不得不分泌更多胰岛素,导致高胰岛素血症。这些因素叠加起来,最终可能导致Ⅱ型糖尿病的发生。

2、 NK细胞与胰岛素抵抗的关系

胰岛 素抵 抗 是由肥胖所引发的严重的并发症,最终会导致Ⅱ型糖尿病。肥胖引起胰岛素抵抗的一个重要原因是起源于内脏脂肪组织(visceraladiposetissue,VAT)的慢性系统性炎症。VAT炎症与促进炎症巨噬细胞在脂肪组织的积累相关,但是诱发巨噬细胞积累的免疫信号仍然未知。

来自克罗地亚里耶卡大学的研究团队发现脂肪组织内的不同表型的自然杀伤细胞(naturalkiller,NK)在肥胖应激及胰岛素抵抗过程中发挥着重要作用。研究人员对两组实验小鼠分别给与普通饮食和高脂肪饮食,发现高脂肪的饮食组的脂肪组织里有NK和干扰素γ(Interferon-γ,IFN-γ)的产生,这表明 NK在肥 胖引发的 脂肪应激和VAT炎症之间存在着关键的联系 。

研究结果表明:肥胖引起脂肪细胞中NK细胞激活受体1(NKcell-activatingreceptor1,NCR1)的配体上调;这刺激NK细胞增殖,刺激IFN-γ产生,进而引起促炎巨噬细胞的分化,产生胰岛素抵抗。NK细胞缺失,NCR1或者IFN-γ能阻止促炎巨噬细胞在VAT的积累,这会大大改善胰岛素敏感。

因此NK细胞是在响应肥胖引起的脂肪应激过程中巨噬细胞分化和胰岛素抵抗的 关键调控子 。此项研究提供了重要的理论依据,证明脂肪组织中的NK细胞及巨噬细胞,可作为治疗代谢综合症病人,及 降低Ⅱ型糖尿病进展风险的新靶点 。

3、 NK细胞外泌体:潜在新策略

自然杀伤(NK)细胞 被认为通过调节全身炎症与Ⅱ型糖尿病相关。然而,NK细胞调节胰岛素敏感性的机制仍然未知。

2021年11月30日,中国药科大学徐寒梅团队在SignalTransductionandTargetedTherapy(IF=18.19)在线发表题为“Naturalkillercell-derivedexosomalmiR-1249-3pattenuatesinsulinresistanceandinflammationinmousemodelsoftype2diabetes”的研究论文,该研究发现来自 瘦小鼠的NK衍生外泌体减轻了肥胖诱导的Ⅱ型糖尿病小鼠的胰岛素抵抗和炎症。此外,瘦NK衍生的外泌体可增强胰岛素敏感性并缓解脂肪细胞和肝细胞的炎症 。MiR-1249-3p在瘦NK衍生的外泌体中显著上调,可以通过外泌体从NK细胞转移到脂肪细胞和肝细胞。 NK衍生的外泌体miR-1249-3p显著诱导细胞胰岛素敏感性并缓解炎症 。

从机制上讲,外泌体miR-1249-3p直接靶向SKOR1以调节三元复合物SMAD6/MYD88/SMURF1的形成,其通过抑制TLR4/NF-κB信号通路介导葡萄糖稳态。该研究揭示了NK衍生的外泌体miR-1249-3p在缓解胰岛素抵抗中的新作用,并为Ⅱ型糖尿病提供了一系列潜在的治疗靶点。

Ⅱ型糖尿病是代谢性糖尿病的最常见形式,特征是 高血糖(也称为高血糖症)和胰岛素抵抗 。遵循高脂肪饮食的个体特别容易患肥胖症,这显然是人类胰岛素抵抗的最常见原因。胰岛素抵抗的症状包括脂肪细胞、肌肉细胞和肝细胞对胰岛素的敏感性降低,以及失调的胰岛素信号和葡萄糖、脂肪和蛋白质的代谢紊乱,最终导致Ⅱ型糖尿病的平行上升。Ⅱ型糖尿病患者总是伴随着亚临床全身性低度炎症反应和脂肪组织、肝脏、胰岛、下丘脑、心脏组织和其他组织的功能障碍,最终发展为慢性并发症。

先前的研究表明, 免疫系统调节全身的代谢器官 。各种免疫细胞,如T细胞、B细胞、巨噬细胞和NK细胞,在Ⅱ型糖尿病中起着至关重要的作用。肥胖诱导炎症,其特征是巨噬细胞浸润增加,并与巨噬细胞群从抗炎M2巨噬细胞转变为促炎M1巨噬细胞相关,在很大程度上导致肥胖引起的胰岛素抵抗。 NK细胞和巨噬细胞可以合作调节炎症 。此外,脂肪细胞上调肥胖中NK细胞激活受体(NCR1)的配体,这会触发NK细胞的增殖。事实上,NK细胞在肥胖诱导的炎症和胰岛素抵抗中起着关键作用。然而,NK细胞在肥胖引起的炎症中的作用和机制尚不清楚。 

外泌体是直径约30-150nm的囊泡状体 ,是细胞内体膜向内出芽形成的多囊泡,与细胞膜融合后释放到细胞外环境中。外泌体由各种类型的细胞产生,并通过运输信息货物作为细胞间通讯的介质,例如蛋白质、脂质和RNA(miRNA、mRNA、lncRNA和circRNA),在外泌体中稳定并转移。此外,外泌体可以由胰岛β细胞、干细胞和胰岛素敏感组织分泌,然后转移到代谢器官、免疫细胞和内皮细胞以维持葡萄糖稳态或通过免疫反应、氧化应激和血管生成加重胰岛素抵抗。然而,脾脏NK细胞衍生的外泌体在Ⅱ型糖尿病的发生和发展中的参与尚不清楚。

NK细胞通过控制炎症因子的释放在小鼠体内发挥抗抑郁样作用。 NK细胞衍生的外泌体miR-207减少促炎细胞因子(IL-1β、IL-6和TNF-α)的释放并减轻小鼠的抑郁样症状 。在这项研究中,揭示了 NK衍生的外泌体在缓解胰岛素抵抗中的新作用,并为Ⅱ型糖尿病提供了潜在的治疗靶点 。

app
公众号
投稿 评论 关灯 顶部