首页 > 外泌体 >正文

脂肪外泌体特异性蛋白(外泌型蛋白)

2022-12-17 05:03:09 作者:max
评论:0

本文目录一览:

细胞外泌体是什么?

外泌体——是一类有细胞释放的细胞外囊泡。外泌体的特点见正文。

细胞外囊泡——简称EV,是由细胞释放的各种具有膜结构的囊泡结构统称,这些囊泡的直径可以从30、40nm到8、9um。细胞外囊泡有不同的亚群,而目前研究最火热的是外泌体这个亚群。

然而由于目前很难纯化到非常纯的外泌体亚群,人们纯化到的通常是直径小于200nm的囊泡,因此越来越多的人开始称之为sEV(即 small extracellular vesicle,小细胞外囊泡)。为了严谨,所以今天我们也以细胞外囊泡来称呼这些膜泡结构。本文中没有特殊说明的情况下,细胞外囊泡主要指外泌体和微囊泡。

今天主要介绍内容包括细胞外囊泡的研究意义、细胞外囊泡的分类、细胞外囊泡含有的成分、细胞培养上清的制备、细胞外囊泡的保存、细胞外囊泡的鉴定实验要求。所有内容都参考目前已发表的综述,并非hzangs杜撰。所以请新朋友们放心学习。

细胞外囊泡的研究意义

目前,细胞外囊泡的功能还没有完全阐明。已有的报道认为它们能够调节宿主-病原体的相互作用,参与传染性和炎性疾、神经疾病和癌症等很多种疾病的病理过程,同时在正常的生理过程中也发挥着介导细胞间通讯的重要功能,已有文章报道细胞外囊泡在发育中也发挥着重要作用。细胞外囊泡在临床医学中也有十分光明的应用前景,主要是因为它们含有丰富的生物标志物,可用于监测临床状态,治疗反应,疾病进展等,同时由于它们具有递送生物分子的功能,因此它们还有发展成临床药物递送载体的潜力。

细胞外囊泡的分类

细胞外囊泡—这个词是由国际细胞外囊泡学会(ISEV)创造的术语,根据细胞外囊泡的生物合成或释放途径可以对囊泡进行分类:外泌体(exosomes)直径为30-150nm,起源于内吞途径,其密度约为1.11-1.19g mL-1;微粒/微囊泡(microparticles/microvesicles)直接从质膜释放,直径约100-1000nm;凋亡小体(apoptotic body/bleb)直径约为50nm-2μm,由细胞凋亡产生;肿瘤小泡(large oncosomes)直径约1-10μm,由肿瘤细胞释放产生;以及其他各种EV亚群。由于不同EV亚群的大小以及它们的所包含的生物分子存在差异,因此现在已经有几个小组开始表征EV亚群的组成。最近的论文声称,基于一般表面蛋白质组学分析或个别EV群体的转录谱,对细胞外囊泡进行了成功的亚群分类。目前可以通过差速离心、过滤、免疫亲和、层析、流式细胞分选、密度梯度离心选取不同密度区域等多种手段大致分离不同的细胞外囊泡亚群,但是这些方法都不能完全纯化到特定的亚群,分离到的通常是富集了某一个亚群同时带有其他细胞外囊泡亚群。

细胞外囊泡含有的成分

细胞外囊泡的组成成分并不是随机的,每一个细胞外囊泡都会携带特定的分子信息。 实际上,这些纳米尺寸的细胞外囊泡能够携带蛋白质,脂质,核酸和糖等生物活性分子在细胞间传递信号,并且其包装的独特分子构成决定了要传递给受体细胞的细胞外信号的类型。有一个复杂的分选系统来决定那些分子能够进入细胞外囊泡。

细胞培养上清的制备

目前有两个策略来制备细胞培养上清用于提取细胞外囊泡。使用去除细胞外囊泡的胎牛血清(FBS)培养基培养细胞和使用不含FBS的培养基培养细胞(血清饥饿细胞)。但是目前一些高水平的文章报道使用的方法通常是前者。另外,有些文章开始关注去除细胞外囊泡的胎牛血清中游离RNA对实验结果的影响,但是目前并没有形成共识。如果需要先储存培养上清,一定量后再用于细胞外囊泡分离,那需要预先去除体系中的死细胞和细胞碎片。

细胞外囊泡的保存

Lőrincz等人曾对中性粒细胞来源的细胞外囊泡做了不同条件的储存,之后再去分析这些囊泡的特性,他们发现虽然细胞外囊泡样品中囊泡数量和形态没有明显变化,但即使是储存在-20或-80摄氏度情况下的细胞外囊泡也存在磷酯酰丝氨酸外翻明显增多的情况;但他们同时也发现,尿液来源的细胞外囊泡并没有这些变化。Kalra等人分离了来自结直肠癌细胞的细胞外囊泡,不同条件保存一定时间后进行PKH67染色跟踪细胞外囊泡的摄取,分析发现这些囊泡依旧可以被细胞摄取。就目前的情况,学者们并未就储存条件对细胞外囊泡是否有影响达成共识。因此建议大家实验时分离细胞外囊泡后尽快用于实验,尽量减少储存过程。

细胞外囊泡的鉴定及实验要求

根据国际细胞外囊泡协会于2014年发表的一个指导手册(MISEV),鉴定外泌体首先需要通过WB来鉴定细胞外囊泡的标志蛋白是否存在于样品中,通过电子显微镜来观察样品中细胞外囊泡的形态特征,通过NTA等手段来分析样品中细胞外囊泡的群体特征(粒子浓度、直径分布等)。

今天就先介绍到这里。细胞外囊泡领域作为生物学研究中的一个新兴领域越来越受到学者和生物公司的关注,也有越来越多的研究报道出现。但是我们也要清楚的认识到该领域的研究技术依旧不完善,对细胞外囊泡的认识依旧不充分,细胞外囊泡研究依旧处于一个起始阶段,要走的路还很长。

什么是外泌体?

什么是外泌体

人到中年,最难以启齿的矛盾便是脸上越来越多的皱纹和内心与日俱增的

“抗老需求”之间的矛盾。为了今天的容颜不被明天改变,什么玻尿酸、水光针甚至是干细胞美容,我都勇于“尝鲜”。而作为美容界的后起之秀——“外泌体”,我更是不愿错过。毕竟它虽然是近两年兴起的美容模式,但其发展历史也已经有40多年了,而它的美容功效更是有口皆碑,比干细胞美容有过之而无不及,一时间,关于外泌体美容的宣传铺天盖地,可谓是风头无两,颇有“江湖大佬”的地位。但也正因为如此,我们更要科学严谨的对待外泌体美容,了解它的原理,才能更好的应用它。

外泌体,从字面上看,就是细胞向外分泌的物体。科学释义是:细胞所分泌的直径为30~150nm的双层磷脂囊泡,主要功效成分包括蛋白质类物质及micRNA类核酸物质。

外泌体的作用机理

外泌体最大的功能便是人体的“通信兵”,它能在细胞间传递物质,从而调控受体细胞的功能及生物学行为。通俗的说,外泌体就好像一辆“细胞货拉拉”,装了自家一堆有用的东西(里面有miRNA,mRNA和lncRNA等小分子核酸,还有细胞因子等蛋白),然后分泌出细胞外,再接着进入另一个细胞,进行“卸货搬家”。

希吉亚外泌体分离方法

外泌体天然存在于血液、尿液、唾液、母乳和细胞培养基等生物体液中,希吉亚外泌体的分离方法有很多种,常用的有超速离心法、免疫磁珠法等。

Ø

超速离心法:超速离心法是大家最熟悉的一种分离方法,文献中应用最多且也是目前比较受到认可的方法。超速离心是先通过低速离心去除细胞和细胞凋亡碎片,再通过超高速去除大囊泡和沉淀外泌体。此方法耗时耗力,往往需要8-30个小时;且需要大量的起始材料和超速离心机;产量不高。

希吉亚外泌体美容机制

Ø

免疫磁珠法:利用外泌体表面特有的表面标记物(如CD63、CD9蛋白),用包被抗标记物抗体的磁珠与外泌体囊泡孵育后结合,即可将外泌体吸附并分离出来。该方法具有特异性高、操作简便、不影响外泌体形态完整等优点,但外泌体的生物活性易受pH和盐浓度影响,不利于下游实验。

促进细胞再生。外泌体可以有效刺激受体细胞,释放细胞活力,促进其再生和新生。因而可以帮助淡化祛除斑点,促使肌肤光亮细腻。

修复受损细胞。外泌体外泌体可以加速I型胶原和III型胶原的基因表达,促进成纤维细胞增殖、胶原合成,从而让帮助修复受损的肌肤屏障。而且它可以提高受损部位的修复能力和愈合能力。

抑制炎症产生。外泌体可以诱导巨噬细胞向M2型极化,从而降低了巨噬细胞诱发炎症反应的能力,从而抑制炎症。我们肌肤的很多问题都与肌底炎症有关,而外泌体可以通过抑制炎症来让肌肤从内而外的健康起来。

干细胞疗法围绕使用完整细胞来替代丢失的组织。相反,外泌体是与细胞分离的囊泡。外泌体促进恢复青春活力的方式是利用外泌体中携带的有效成分来帮助其他细胞。

干细胞和外泌体的另一个主要区别是前者仅从身体的特定部位获得,例如:骨髓、血液、脂肪组织。而外泌体,可以从几乎所有类型的细胞中获得。胎盘中也含有大量的外泌体。

通过上述科普,大家对外泌体美容一定有了更全面的认识

细胞外miRNAs:从生物标志物到生理和疾病的调节因子

原文链接: Cell Metabolism 30, October 1, 2019. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. IF: 22.415

miRNAs可在血清和其他体液中发现,并可作为疾病的生物标志物。更重要的是,分泌型miRNAs,尤其是胞外囊泡(EVs)如外泌体分泌的miRNAs,可能介导不同组织间的旁分泌和内分泌通讯,从而调节基因表达和远程调控细胞功能。分泌型miRNAs受影响时可能会导致组织功能障碍、衰老和疾病。 脂肪组织是循环外泌体miRNA的重要来源。 在许多代谢条件下发生的脂肪组织质量或功能的改变可以导致循环miRNA的改变,从而引起机体一系列的功能改变。

这篇综述回顾了得出这些结论的研究,并讨论了如何为新的研究奠定基础,有助于进一步确定细胞外miRNA作为细胞间通讯的重要介质如何发挥强大作用。

综述分为以下几个部分:

MicroRNAs (miRNAs)是由体内各种细胞产生的约22个nt的调节性非编码小RNA。许多miRNAs在进化过程中高度保守,尽管它们的多样性和数量与机体的复杂性相关。秀丽隐杆线虫的基因组包含437个miRNAs,小鼠超过1500个,而人类的miRNAs在2000到3000个之间(数据来自miRBase,第22版)。许多miRNAs可以无所不在地表达,而其他的则具有组织特异性。这种分布模式是由细胞内miRNA前体的转录和转录后调控所驱动的。

在细胞核中,初级miRNAs(pri-miRNAs)被RNA聚合酶II转录,然后由微处理器复合物(内含核糖核酸内切酶DROSHA及其RNA binding partner DGCR8)或剪接机制的组件进行处理。这导致了约70个nt的pre-miRNAs,被XPO5和Ran GTPase输出到细胞质中。pre-miRNAs被III型核糖核酸内切酶DICER和RNA结合蛋白TRBP与PACT共同处理,产生双链miRNAs duplex。这些miRNAs duplex被加载到RNA诱导的沉默复合体(RISC),在RISC中,Argonaute-2 (AGO2)及其分子伴侣HSC70/HSP90介导双链miRNAs duplex的一条链与其靶mRNA结合(另一条链一般很快被降解了),抑制mRNA的翻译和/或加速mRNA的降解。也有一些miRNAs发挥非常规的相反作用:诱导转录和上调蛋白表达的。不依赖DICER的miRNA生成也有报道,但它们的影响有限。

与mRNAs类似,miRNA表达谱也可作为细胞标志物。例如,miR-122在肝脏中高度表达,占该组织中总miRNA表达量的70%。肌肉细胞中富含miR-1、miR-133a、miR-133b、miR-206、miR-208a、miR-208b、miR-486和miR-499,因此这些miRNAs被称为myomiRs;miR-9和miR-124几乎完全在大脑中表达,后者占了该组织中近50%的miRNA含量;而β细胞是唯一高丰度表达miR-375的细胞。另一方面,一些细胞,如脂肪细胞和干细胞,表达多种miRNAs。

为了理解miRNAs 的表达如何在特定细胞类型中促进该组织的发育和稳态,产生了多种 细胞类型特异性DICER或DGCR8敲除小鼠 。中枢神经系统、胰腺、骨骼肌和心肌的DICER敲除使小鼠不能成活或出现严重的发育缺陷。而肝脏特异性DICER敲除小鼠(LDicerKO)和脂肪细胞特异性敲除小鼠DICER (ADicerKO)或DGCR8 敲除小鼠(ADgcr8KO)在成年之前与野生型的幼鼠难以区分,直到它们开始出现代谢功能障碍。包括LDicerKO小鼠肝脂质沉着症和早发性肝细胞癌;ADicerKO和ADgcr8KO小鼠部分出现脂肪营养不良和胰岛素抵抗。许多表型是因为miRNAs生成受阻改变mRNA半衰期和细胞的翻译功能,但是有一些表型因为其他组织中基因表达和功能的变化引起的二级改变,提示细胞非自治组织miRNAs损失的影响。当ADicerKO小鼠移植正常脂肪组织后,其肝脏基因表达发生逆转,提示这些变化受脂肪组织分泌的miRNAs调控。这种现象产生一个假象:每个细胞的miRNAs是内源性miRNAs产生和外源性miRNAs摄取的总和。要证实这一假设,就需要发展稳健的技术来追踪miRNAs起源和运输。

miRNAs可以通过囊泡转运和蛋白载体的机制被细胞输出和导入是miRNAs具有潜在的细胞和组织间通讯作用的强有力支持。这个概念最早是由Valadi等人在 2007年 提出的,他们在不同细胞系分泌的胞外囊泡(EVs)中识别出大量的mRNAs和miRNAs,这些囊泡可以被其他细胞吸收,然后将mRNAs和miRNAs释放到靶细胞中。 2010年 有研究表明,体液中存在miRNAs,且它们的水平与疾病进展相关。从那时起, 细胞外miRNAs转运机制 被广泛研究,目前已知 的两条主要途径 是: (1)通过EVs主动转运;(2)作为蛋白-miRNA复合物的一部分转运 。此外,可能有一些miRNAs是从破损或受损的细胞中泄漏出来的。

通常,多泡体(MVBs)与质膜融合产生的较小的EVs ( 200nm )称为外泌体(图1),而质膜直接向外出芽和裂变形成的较大EVs ( 200nm )称为微囊泡。直接出芽也能产生类似外泌体的小泡,被称为梭状囊泡或胞外体。

除EVs外,miRNAs还可能在含有蛋白复合物的血液中被运输。这些复合物也可以进入细胞并传递miRNAs来抑制靶mRNA。 低密度(LDL)和高密度(HDL)脂蛋白 都可以在循环中运输miRNAs。在HDLs的情况下,结合的miRNAs可以通过B类I型清道夫受体被受体细胞吸收并在细胞内释放从而调节受体细胞基因表达。

尽管EVs相关和脂蛋白结合的miRNAs在功能上很重要,但它们只是占循环中发现的所有miRNAs的一部分。在一些研究中,在人类血清中发现超过一半的miRNAs可能与核糖核酸蛋白结合,包括argonaute ( AGO2 );然而,其中只有一小部分是通过这种方式运输的。核仁蛋白核磷蛋白1 (nucleophosmin 1, NPM1 )也被发现可以携带和保护细胞外miRNAs不被降解。

生物标志物是一种可以用于疾病检测和/或预后预测的分子。一个好的生物标志物最重要的四个特征是特异性、敏感性、稳定性和非侵入性。 循环miRNAs水平的变化与多种疾病相关,包括2型糖尿病(T2D)、肥胖、心血管疾病(CVD)、癌症、神经退行性疾病等。

这部分内容参考我写的 ChemicalReviews综述 ,那里面有更详细的描述。

脂肪组织的功能除了以甘油三酯的形式储存能量外,还能分泌调控全身新陈代谢的分子来维持机体内环境平衡。这些分子包括脂肪产生的激素(被称为脂肪因子),信号脂质,炎症介质和EVs miRNAs。 ADicerKO小鼠约三分之二的循环miRNAs显著减少,这表明了脂肪组织对循环miRNAs库的显著贡献。 患有各种脂肪营养不良的患者,其循环外泌体miRNAs也有显著改变。重要的是,脂肪组织分泌的miRNAs已经被证明可以到达肝脏和肌肉等器官,并调节该组织基因和蛋白质的表达。

脂肪来源的循环miRNAs以内分泌方式控制代谢稳态的一个例子是2017年Thomou等人通过脂肪来源的miR-99b调控肝脏FGF21。 ADicerKO小鼠循环EVs中的miR-99b水平降低,肝脏中Fgf21 mRNA及3' UTR-报告基因活性的上调,这两种现象可通过往循环中加入含有 miR-99b 的EVs显著纠正。ADicerKO小鼠还显示出其他组织(包括肌肉、β细胞和骨骼)功能障碍,以及全身胰岛素抵抗。 但具体是哪些循环外泌体miRNAs参与了这些表型仍有待确定。

其他研究表明,来源于脂肪EVs的miRNAs也可以发挥旁分泌功能。从含有 miR-16、miR-27a、miR-146b和miR-222 的大脂肪细胞中释放的EVs可以转移到小脂肪细胞中,从而刺激其脂肪生成和脂肪细胞肥大。脂肪细胞分泌这些miRNAs是由游离脂肪酸和H 2 O 2 诱导的,在老年小鼠的血清中这些miRNAs表达上调。这些结果提示促进脂质积累和胰岛素抵抗的信号可能通过脂肪细胞的分泌miRNAs从胰岛素抵抗的脂肪细胞向新形成的脂肪细胞传播。肥胖患者的多种脂肪组织衍生的循环miRNAs(通过含脂肪特异性蛋白FABP4的细胞外颗粒的亲和纯化鉴定)在减肥手术一年后发生了显著变化。估计这些miRNAs可靶向WNT/β-catenin和胰岛素信号通路的成分。减肥手术后差异表达的miRNAs中, let-7a和miR-16 的靶标涉及胰岛素受体信号传导,并且这些miRNAs的水平与支链氨基酸(BCAA)的水平相关,表明它们可能与全身胰岛素抵抗相关。

胰岛细胞不仅可以通过分泌胰岛素和胰高血糖素来控制代谢,还可以通过分泌miRNAs来控制代谢。 初级胰岛细胞和β细胞来源的MIN6细胞在收到胰岛素分泌刺激时可释放特定的miRNAs。例如,与瘦组相比,肥胖ob/ob小鼠的血清、胰岛、肝脏和骨骼肌中 miR-223 表达上调。但其前体pri-miR-223仅在胰岛中升高,这表明其他组织中成熟miR-223水平升高来源与胰岛。miR-223已被证明能与 Glut4 mRNA的3' UTR结合,下调脂肪组织中的GLUT4( 葡萄糖的代谢取决于细胞对葡萄糖的摄取,然而,葡萄糖无法自由通过细胞膜脂质双层结构进入细胞,细胞对葡萄糖的摄入需要借助细胞膜上的葡萄糖转运蛋白(glucose transporters)简称葡萄糖转运体(GLUT)的转运功能才能得以实现。GLUT4就是其中的一种形式 ),上调心肌细胞的GLUT4表达。

miR-155、miR-142-3p和miR-142-5p 可能从T淋巴细胞来源的EVs转移到β细胞,导致炎症通路、细胞凋亡的激活和胰岛素缺乏性糖尿病的发生。

人单核细胞在促炎刺激后分泌的EVs具有高水平的 miR-150 。用这些EVs孵育微血管内皮细胞可下调miR-150靶基因c-Myb,这是一种参与内皮细胞迁移的转录因子。miR-150在体外过表达可诱导内皮细胞迁移,这种作用可通过动脉粥样硬化患者(miR-150水平上调)血浆中的EVs孵育来模拟。来自血管平滑肌细胞的EVs已被证明能够促进 miR-155 向内皮细胞的转移,通过降低紧密连接蛋白的水平来影响内皮屏障的完整性。暴露于氧化的低密度脂蛋白(LDL)的内皮细胞分泌的EVs高表达miR-155,miR-155可以将巨噬细胞的极化从M2样表型转移到促炎性M1样表型。血清和心脏中 miR-126 水平的变化被认为通过影响MCP-1和VCAM-1的表达而在心功能障碍中发挥作用。这些过程改变内皮功能,促进动脉粥样硬化。

越来越多的证据表明,循环EVs可能穿过室管膜层和血脑屏障(BBB)作用于中枢神经系统,从而发挥组织间通讯的作用。老龄大鼠鼻腔给药含 miR-219 的血清EVs可增加中枢神经系统的髓磷脂含量。改变血脑屏障(BBB)通透性的神经退行性疾病可以促进大脑循环miRNAs与血液循环miRNAs的交换。也有证据表明 EVs可以通过胞吞机制穿过血脑屏障 。许多细胞外miRNAs被认为是神经退行性疾病的疾病生物标志物,尽管它们在这些疾病的病理生理学中的作用尚不确定。 衰老会影响下丘脑干细胞分泌EVs miRNAs,而脑室内注射下丘脑干细胞分泌产生的EVs能够延缓下丘脑衰老。(汤老师的Nature文章) 含有miRNAs的EVs也涉及神经元、星形胶质细胞、小胶质细胞和内皮细胞之间的相互作用。2018年,Huang等人发现脑损伤后小胶质细胞EVs 中miR-124水平升高,观察到这个miRNA可以转移到神经元中发挥抑制神经元炎症和促进神经元突触生长的作用。

尽管这个领域还很年轻,但细胞外miRNAs作为细胞间通讯的生理机制的概念却令人兴奋并受到关注,使用细胞外miRNAs更好地对疾病分期以及治疗的前景也是如此。目前,开发合适的工具和标准化的方法来评估miRNAs的运输和交付是该领域的瓶颈,但是在未来几年可能被克服。克服这些障碍将把这一领域带入一个新的高度:特定的细胞外miRNAs可被视为不同生理和病理生理状况的生物标志物,而外泌体或其他EVs中的miRNAs可被用于以一种特定而有效的方式治疗疾病。

感觉这篇综述的质量不如我写的上一篇 ChemicalReviews综述 ,那篇更全面,并且对某些方面描述也更具体。不过这篇也可以学到少量那篇综述没涵盖到的知识点。

原文链接: Cell Metabolism 30, October 1, 2019. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. IF: 22.415

如果你关注了我,希望你与我一起学习,一起成长!❤

app
公众号
投稿 评论 关灯 顶部