免疫细胞储存就是利用生物科技技术,从成人外周血或新生儿胎盘脐带血内分离一定数量的免疫细胞。经专业检测、纯化分离,确保高活性高增殖能力后,利用液氮-196℃低温保存。待需要时再进行免疫细胞种子的复苏、扩增,制备成 药品级别的特定细胞,从而用于免疫修复和肿瘤防治的目的。
一般20-50岁的年龄存储的比较多。
佛罗里达州的一家创业公司为顾客提供了一个可以把自己的免疫细胞储存起来的机会,以便在将来有需要时用于癌症治疗。但科学家对此表示怀疑,认为这并非像简单的冷冻储存那么简单,而且目前也没有足够的数据表明,免疫细胞可以在冷冻20年或更长时间之后仍然有效。
佛罗里达州一家名为Cell Vault的创业公司希望将你的免疫细胞储存起来,以备将来之需要。该公司表示,这些细胞可以用来制造所谓的抗癌活性药物,并提供将这些细胞冷冻起来进行保存的服务,初始价格为700美元,然后每年的冷冻储存价格为300美元。
相比之下,细胞疗法Kymriah和Yescarta需要数十亿个细胞。这些细胞不是通过抽血获得的,而是通过一种叫做“透析”的过程获得的。在这个过程中,通过一台机器把人血液中的免疫细胞分离出来,然后将剩余的血液再输回身体。这个过程收集了T细胞治疗所需的数十亿个细胞。然而,Kirk表示,病人储存的细胞可以在实验室里繁殖,以制造足够的细胞来进行手术,但该公司尚未提供任何证据证明它能做到这一点。
目前还不清楚FDA是否会允许这种把细胞储存起来以便未来进行治疗的方法。Levine和Lin表示,T细胞疗法的制造商可能需要获得FDA的批准,才能使用来自第三方提供的预冷冻T细胞。FDA还对这些细胞的储存时间进行了限制。Lin说:“不可能说仅仅因为你保存了一些细胞,然后到了需要的时候就可以把这些细胞运送到公司,让它们直接生产繁殖然后投入使用,这样的假设和想法过于简单化了。”
目前看来,也没有足够的数据表明,免疫细胞可以在冷冻20年或更长时间之后仍然有效。(Cell Vault提供了一种储存期长达20年的套餐,每年200美元,还有一种终身存储的套餐,长达80年,每年只需100美元。)Levine担心,提供免疫细胞储存服务的公司可能在向癌症和其他严重疾病的患者兜售虚假的希望,“它们这是在利用人们的恐惧。”
目录
1 拼音 2 英文参考 3 免疫耐受现象的发现
3.1 天然耐受现象 3.2 实验诱导的耐受性
4 影响免疫耐受形成的因素
4.1 抗原方面的因素
4.1.1 抗原的性质 4.1.2 抗原的剂量 4.1.3 抗原注射途径
4.2 机体因素
4.2.1 年龄因素 4.2.2 遗传因素 4.2.3 免疫抑制的联合应用
4.3 免疫耐受的细胞学基础
5 免疫耐受的维持和终止
5.1 影响免疫耐受持续时间的因素
5.1.1 抗原因素 5.1.2 机体因素
5.2 免疫耐受的终止
5.2.1 自发终止 5.2.2 特异终止
6 免疫耐受的机制
6.1 克隆清除 6.2 克隆不应答
6.2.1 免疫活性细胞缺乏激活信号 6.2.2 免疫活性细胞激活受阻 6.2.3 缺乏辅助细胞
6.3 抑制细胞的作用
6.3.1 TS细胞的作用 6.3.2 自然抑制细胞的作用 6.3.3 巨噬细胞的抑制作用 6.3.4 抗独特型网络的作用
7 免疫耐受的临床意义
7.1 防止器官移植的排斥反应 7.2 自身免疫病和超敏反应的防治 7.3 肿瘤及感染性疾病的治疗 7.4 控制生殖过程
1 拼音
miǎn yì nài shòu
2 英文参考
Immune Tolerance
immunologic tolerance
免疫耐受(immunologic tolerance)是指免疫活性细胞接触抗原性物质时所表现的一种异性的无应答状态(a state of specific unresponsiveness)。它是免疫应答的另一种重要类型,其表现与前述的正相免疫应答相反,亦与各种非特性的免疫抑制不同,后者无抗原特异性,对各种抗原均呈无应答或低应答(表131)。
按照免疫耐受形成的特点,可分为天然与获得两种。
免疫耐受既可天然获得,亦可人工诱导。前者称天然耐受(naturaltolerance),后者称获得耐受(acpuiredtolerance)。外来的或自身的抗原均可诱导免疫耐受,这些抗原称耐受原(tolerangen)。针对自身抗原呈现的免疫耐受(self tolerance)。
按照免疫耐受的程度,又可分为完全耐受和不完全耐受。后者又有多种形式。如仅对T细胞或B细胞产生的耐受分别称T细胞耐受或B细胞耐受。又如免疫活性细胞仅对抗原分子上的某一特定决定簇产生耐受而不涉及对其它决定簇的应答,这些现象称为分离耐受(splittolerance)。不完全耐受尚可表现为抗体分泌细胞在再次受抗原 *** 后,产生低亲和力抗体或缺失抗体类别转换,是为免疫偏离(immune deviation)。
表13-1 免疫耐受与免疫抑制的比较
免疫耐受 免疫抑制 原因 细胞系消失或不活化,Ts细胞的抑制作用 免疫活性细胞发育缺损或增殖分化障碍 产生条件 可先天或后天获得,特别是在免疫功能未成熟或减弱时容易形成 先天缺损,或人为产生,如X射线、免疫抑制药物、抗淋巴细胞血清作用 特异性 高 无 持续性 长期的,一时性的或终生 一时性 临床应用 实验治疗阶段 已应用于变态反应,自身免疫病和移植 合并症 无 感染与肿瘤
3 免疫耐受现象的发现 3.1 天然耐受现象
1945年Owen观察到异卵双生小牛胎盘血管融合,血液交流而呈自然的联体共生,可在一头小牛的血液中同时存在有两种不同血型抗原的红细胞,成为血型镶嵌体(chimeras)。这种小牛不但允许抗原不同的血细胞在体内长期存在,不产生相应抗体,而且还能接受双胞胎另一小牛的皮肤移植而不产生排斥反应。但是不能接受其他无关个体的皮肤移植。Owen称这一现象为天然耐受。Bur等人认为异卵双生牛体内,对异型血细胞的耐受现象的产生是由于胚胎期免疫功能尚未成熟,异型血细胞进入胚胎牛体内,能引起对异型细胞产生抗体的免疫细胞克隆受抑制或被消灭,故此小牛出生后对胚胎期接触过的异型红细胞抗原不会发生免疫应答。根据这个理论,不少人进行了诱导实验性耐受工作。
3.2 实验诱导的耐受性
1953后Medawar等将CBA系黑鼠的淋巴细胞接种入A系白鼠的胚胎内,待A系白鼠出生8周后,将CBA黑鼠的皮肤植至该A系白鼠体上,可存活不被排斥。这一实验证实了胚胎期接触抗原物质,出生后对该抗原就有特异的免疫耐受现象。这一发现使人们对于耐受机制的认识有了重大的突破,提示胚胎期接触抗原将导致耐受。其后又证明在成年动物也可引起免疫耐受性,但较胚胎期困难的多。
4 影响免疫耐受形成的因素
抗原性物质进入机体后,有时导致正相免疫应答,有时导致免疫耐受或负相免疫应答。这两种不同免疫应答的出现,取决于诸多因素的影响,而主要与抗原物质及机体两方面的因素有关。
4.1 抗原方面的因素 4.1.1 抗原的性质
耐受原仅是一个功能性定义,有许多因素可影响某抗原使之成为免疫原或耐受原。例如牛或人的丙种球蛋白(BGG、HGG)呈大分子聚合状态时具免疫原性,而分子较小的非聚合单体则是良好的耐受原。给动物注射这种耐受原后,对以后再注入的聚合丙种球蛋白表现为无应答。一般来说分子量小的抗原其免疫原性差,导致耐受能力强,并随分子量大小而递减或递增。例如多聚鞭毛素(分子量104KD)、单体鞭毛素(分子量40KD)及由单体鞭毛素提取的成分A(分子量18kD)三者的免疫原性依次递减,而致耐受原性则依次递增。
此外,可溶性抗原常为致耐原,而颗粒性抗原则易于引起正相免疫应答。易被吞噬细胞迅速摄取的抗原常诱发免疫应答,而缓慢或不易被吞噬细胞摄取的抗原则多为致耐原。抗原表位密度高,即抗原分子表面具有许多相同重复的抗原决定簇者,其致耐原强。
4.1.2 抗原的剂量
足以诱导耐受的抗原剂量随抗原种类、动物的种属、品系及年龄、且参与效应细胞类型等的不同而有所差异。一般来说,抗原剂量越大所诱导的耐受越完全和持久。
Mitchison在1964年首先报告高、低带耐受性(highzone,lowxone tolerance)现象。当他给小鼠注射低剂量(108M)与高剂量(105M)牛血清白蛋白(BSA)后,动物出现耐受。而中等剂量(107M)BSA引起良好的免疫应答。
T、B细胞产生耐受所需抗原剂量明显不同。T细胞所需抗原量较B细胞要小10010000倍,而且发生快(24小时内达高峰),持续长(数月)。而B细胞形成耐受不但需要抗原量大,且发生缓慢(12周),持续时间短(数周)(表132)。
表132 低带与高带耐受主要特征比较
低带耐受 高带耐受 参与细胞 T细胞 T、B细胞 产生速度 快 慢 持续时间 长 短 抗原 TD 任何抗原
Waigle研究指出,小剂量抗原引起T细胞耐受,而大剂量抗原则引起T细胞和B细胞都耐受。
致耐受所需抗原量与个体的年龄有关,即随年龄相应增大。与抗原的类别亦有关,即强免疫原性抗原大量注入时能引起耐受,继续注入大量抗原使耐受性增强;胸腺非依赖抗原高剂量易致耐受,胸腺依赖抗原用高、低剂量均可引起耐受。
4.1.3 抗原注射途径
一般来说,抗原经静脉注射最易诱导耐受性,腹腔注射次之,皮下及肌肉注射最难。但不同的部位静脉注射引起后果可各异。HGG经颈静脉注入引起免疫,肠系膜静脉注入引起耐受;IgG或白蛋白注入静脉能致耐受,注入周围静脉则引起免疫应答。有些半抗原经皮内注射能诱导抗体生成及迟发型变态反应,但通过口服则发生耐受性。
通过肠系膜及门静脉注射易于致耐受的原因可能是由于肝起着生物学过滤的作用,将抗原解聚,聚合抗原被肝内枯否细胞吞噬降解,从而除去了免疫原性强的抗原部分,剩下非聚合抗原进入外周血流或淋巴道。
4.2 机体因素 4.2.1 年龄因素
年龄与耐受易感程度密切相关。Owen与Billingham等人的资料表明胚胎期与新生期的免疫系统接触抗原(不论是天然或人工的)后,极易导致终生或长期的耐受性。其后,许多实验证实这一现象的普遍性。这主要与免疫系统发育未成熟有关,体外实验证明未成熟细胞大30倍以上。成年机体一般亦不易诱导耐受,常须联合应用其他免疫抑制措施,以加速其诱导过程。
4.2.2 遗传因素
小鼠免疫耐受及维持的难易程度随品系不同而异。自身免疫病好发鼠(NZB×NAW)F1品系难于诱导耐受,所诱导出的耐受性维持时间短。所有自发产生类似人类系统性红斑狼疮(SLE)品系小鼠不易用半抗原或非聚合的免疫球蛋白诱发耐受。
4.2.3 免疫抑制的联合应用
前已提及,单独使用抗原一般不易对成年机体诱发耐受性,而常需要与各种免疫抑制措施联合应用。常用的有效方法是全身淋巴组织照射,应用抗淋巴细胞血清(antilymphocyte serum,ALS),抗TH细胞抗体(人抗CD4、小鼠抗L3T4),环磷酰胺,环孢素A,糖类皮质激素等免疫抑制药物。
上述现象不仅已被许多实验所证明,而且在器官移植临床工作中已被证实是延长移植物存活的有效措施,认为是常规防止移植物排斥的方法。
单纯免疫抑制药物并不能诱导出抗原特异性的免疫耐受。这些药物必须与抗原联合应用,在免疫耐受形成过程中起促进作用,降低耐受原剂量,阻断抗原 *** 后免疫活性细胞的分化。
例如环磷酰对抗原诱导免疫耐受有促进作用。现已证明,环磷酰胺同时作用于T及B细胞。它参与免疫耐受诱导的机制可能与其阻止B细胞表面免疫蛋白受体的再生有关。
又如全身淋巴组织照射时用铅板遮蔽骨髓、肺及其他生命重要的非淋巴器官,因此剂量即使高达40戈瑞(Cy)亦无副反应。这种处理可使机体胸腺及二级淋巴器官中已成熟的淋巴细胞受到破坏,造成类似新生期的状态。此时胸腺和二级淋巴器官中未成熟的淋巴细胞可重新形成集落,细胞表面虽有抗原受体表达但尚未发育成熟。因此,全身淋巴组织照射后能用多种抗原诱导出持久的免疫耐受,如输注同种异体骨髓能建立起同种骨髓嵌合体且不发生移植物抗宿主病。这种情况下,耐受性的维持与体内产生特异性的抑制细胞有关,称为天然抑制细胞。这种细胞见于新生及照射过的动物脾内,它们不具有通常T细胞表面标志,表型类似NK细胞,但对NK细胞敏感的靶细胞并无杀伤作用。
4.3 免疫耐受的细胞学基础
免疫耐受的细胞学基础是T细胞和/或B细胞对某种抗原物质产生了免疫耐受性。而且只要T、B细胞两者之一产生了免疫耐受性,均可导致免疫系统对该抗原处于负应答状态。Chiller等将新生小鼠摘除胸腺,再用亚致死剂量的X射线照射以杀灭一切具有免疫功能的淋巴细胞,使之成为无免疫功能小鼠,也称“活试管”。另用大剂量单体人丙种球蛋白(HGG)注入另一同品系小鼠,造成高区带免疫耐受,处死后取其胸腺细胞(Tt)和骨髓细胞(Bt);再取同系正常小鼠的胸腺细胞(Tn)和骨髓细胞配成四组:Tt+Bt,Tt+Bn,Tn+Bt和Tn+Bn,分别注入四只活试管小鼠。然后用适量多聚HGG免疫接种,结果除Tn+Bn组能产生相应抗体外,其余3组均不产生。若改用适量多聚火鸡丙种球蛋白(TGG)进行免疫 *** ,四组均能产生相应抗体。此实验除证明免疫耐受有特异性外,也说明T、B细胞在形成免疫耐受中的作用。实验还发现T细胞在注入耐受原后,即形成免疫耐受性,持续150天,而且大小剂量的耐受原均可使其耐受。而B细胞在注入耐受原后10天才形成免疫耐受性。持续50天即消退,只在注入高剂量耐受原时才形成免疫耐受性。从而说明T细胞比B细胞更易致免疫耐受。T细胞与B细胞免疫耐受性比较见表9.1。
表9.1 T、B细胞免疫耐受性比较
T细胞 B细胞 耐受形成 较易 较难 抗原 TD(高、低剂量) TDAg(高剂量) TIAg(高剂量) 诱导期 较短(12天) 较长(数十天) 维持时间 较长(数月) 较短(数周)
5 免疫耐受的维持和终止
5.1 影响免疫耐受持续时间的因素 5.1.1 抗原因素
抗原的持续存在是维持机体免疫耐受性的必要因素。因免疫系统中不断有新的免疫活性细胞产生,持续存在的抗原可使新生的免疫细胞不断耐受。一旦体内的抗原消失,则已建立起来的免疫耐受可使耐受性也逐渐消退,对特异抗原可重新出现免疫应答。
多次重复注射耐受原可使耐受状态延长,持续时间长短与使用抗原次数有关。
抗原的性质与耐受性维持时间也有关。一些有生命的耐受原,如活的淋巴细胞、病毒等能在体内繁殖,此种抗原在体内持续时间长,因而诱导的耐受性亦不易消退。在一些无生命的抗原中,分解缓慢的抗原较分解迅速的抗原所诱导的耐受性持续时间长。如D氨基酸多聚体在体内分解缓慢,只需一次性注射就诱导出长达一年的耐受状态。
5.1.2 机体因素
免疫系统处于未成熟状态时,如胎儿、新生期、经适当的免疫制措施后,所诱导的免疫耐受性维持时间长。
5.2 免疫耐受的终止 5.2.1 自发终止
已建立了耐受性的个体如无抗原的再度 *** ,免疫耐受性随着体内抗原被清除而自行消退,重新出现对特异抗原的免疫应答,此即为免疫耐受性的自发终止。
5.2.2 特异终止
使用各种模拟抗原物质,可特异地破坏已建立的耐受性。
1.注射化学结构改变的耐受原如通过理化及生物因素使抗原结构改变。
2.注射置换载体的新抗原将耐受原的半抗原部分连接到另一载体上,形成新抗原。例如,事先以BSADNP诱发家兔产生耐受性,将DNP连接至HAS上,若将其注射至耐受家兔,可使其再度出现抗DNP抗体,即原有的特性免疫耐受性终止。
3.注射与耐受原有交叉反应的抗原具有共同抗原决定簇的各种抗原物质能够诱导交叉反应。人体对自身抗原有免疫耐受性,接受交叉抗原 *** 后,可能导致自身耐受性的终止,而出现自身免疫性。
6 免疫耐受的机制
1975年著名免疫学家Bur提出克隆选择学说,并以克隆清除(clonaldeletion)学说解释免疫耐受现象。他的观点曾对免疫学的发展产生深远影响。随着近代基础免疫学,尤其是免疫调节研究的迅速发展,当前对免疫耐受机制的认识已远远超越了这一学说当时的涵义。它的发生涉及到免疫应答过程中任何一个正、负调节系统。下述几种重要观点,其各自均有相应的实验证据。
6.1 克隆清除
Bur的克隆选择学说提出体内约存在着102107具有免疫活性的细胞克隆,每一克隆细胞都具有其特异的、能与其相应抗原决定簇起反应的受体。但处于未成熟阶段的T、B反应细胞系因接触抗原而被清除,则造成免疫耐受。现知大量未成熟自身反应性T细胞在胸腺内因接触相应的自身抗原后,发生程序性死亡而被清除,这是维持自身耐受最有效的机制。
克隆清除学说强调了免疫耐受诱导过程的中枢衰竭机制。这一学说尚不能解释许多客观存在的现象:①已建立的耐受性可以、甚至易于被破坏,即对原先的耐受原重新出现免疫应答;②给已建立耐受性的动物输注同品系正常动物的淋巴细胞(含反应克隆)并不能使动物恢复对耐受原的免疫应答;③将已建立耐受动物的淋巴细胞转移到同品系正常动物体内,能使其产生对相同抗原的耐受性;④成年机体对大多数自身抗原虽呈免疫耐受,但业已发现成年机体内可检测到对自身抗原起反应的T和B细胞克隆的存在。
以上事实提示,在免疫耐受,尤其是获得性免疫耐受的机体内,自身反应细胞克隆并未被彻底清除,而是处于功能受抑或无能状态(clonalanergy)。凡是细胞表面抗原受体被封闭,抗原不能与细胞表面受体结合,缺少T细胞或巨噬细胞的辅助作用,以及T细胞与巨噬细胞主动抑制作用,抗独特型网络的主动抑制等都可能参与耐受的诱导过程。导致反应细胞克隆的不应答,而不能发生正相免疫应答。
6.2 克隆不应答 6.2.1 免疫活性细胞缺乏激活信号
现已知T细胞必须的激活信号至少包括:①由特异抗原与自身MHCⅠ类或Ⅱ类抗原的复合物激发的信号;②由协同 *** 因子(costimulator)激发的信号。缺乏足够的激活信号则导致免疫不应答。目前认为,一些针对胸腺内不表达的自身抗原(如器官特异抗原)的自身反应性T细胞克隆存在于正常机体,但因带有这些自身抗原的细胞表面通常有具有MHCⅡ类抗原,因此不能激活相应T细胞克隆。
6.2.2 免疫活性细胞激活受阻
1.免疫活性细胞表面抗原受体被封闭则可产生不应答。适量双价或多价抗原与免疫活性细胞表面抗原受体结合,受体聚集成帽状,使细胞活化而产生免疫应答(图131B)。而单价抗原(monomeric antigen)与免疫活性细胞表面抗原各个受体结合(图131A),抗原占据整个细胞的表面受体,对受体起封闭作用,则不能激活免疫细胞。如分子表面有许多相同重复决定簇的非胸腺依赖抗原在体内不易被分解,能与B细胞表面的抗原受体呈牢固、广泛交联,可使受体封闭。高剂量多价抗原使细胞表面抗原受体广泛交联,使液态镶嵌的细胞膜不能流动,膜受体呈“冻结”状态,细胞不被活化(图131C)。
图13-1 B细胞表面抗原受体的封闭
(A)单价抗原占据B细胞表面抗原受体;
(B)适量双价抗原使B细胞表面受体交联成帽状,内吞;
(C)大量 多价抗原使B细胞表面受体交联“冻结”
2.抗原不能抵达免疫活性细胞表面有时机体在初次接触抗原后,产生抗体过剩,抗体与再次进入的抗原在体液中结合,使抗原不能到达细胞表面受体上,因而也可造成免疫无反应性。
6.2.3 缺乏辅助细胞
胸腺依赖抗原(自然界大多数抗原均属此类)激发免疫应答均需TH细胞巨噬细胞的参与,若缺乏辅助细胞,免疫活性细胞单独不能作出有效应答。
1.缺乏辅助性T细胞(TH) 前已述及T/B细胞对同一抗原产生耐受性时,表现不同的特征。小剂量抗原便足以使T细胞产生耐受,此时B细胞虽未产生耐受,但因失去T细胞的辅助而不能活化,但是T细胞的耐受性维持时间大大超过B细胞(如图132所示)。B细胞虽恢复免疫应答,但T细胞仍处于耐受状态,因而出现T、B反应性呈分离状态的区域(表133)。这时,B细胞仍缺乏必要的T细胞辅助而不能产生有效的免疫应答。
图13-2 T、B 细胞发生耐受的不同特征
2.缺乏巨噬细胞辅助巨噬细胞在免疫应答形成中,起着重要的摄取抗原、加工和呈递抗原的作用,从而参与了特异性免疫应答。所以巨噬细胞的功能缺陷也是耐受诱导的重要的原因。
表133 T细胞与B细胞耐受特征
T细胞 B细胞 克隆清除 蛋白质抗原胸腺内诱导
机制:不成熟T细胞与抗原高亲和力结合导致和序性细胞死亡(PCD) 蛋白质抗原及非蛋白质抗原导部位骨髓或周围尚不肯定
机制、:程序性细胞死亡(PCD) 克降不应答 APC缺乏协同 *** 因子 多价抗原与不成熟B细胞结合 抗原性质 可溶性蛋白质静脉或口服无佐剂参与 大剂量多糖类抗原多聚蛋白质抗原(重复表位)无TH参与 耐受期限 期限长 期限短 抗原耐受剂量 剂量低 剂量高
人体体表面积计算器 BMI指数计算及评价 女性安全期计算器 预产期计算器 孕期体重增长正常值 孕期用药安全性分级(FDA) 五行八字 成人血压评价 体温水平评价 糖尿病饮食建议 临床生化常用单位换算 基础代谢率计算 补钠计算器 补铁计算器 处方常用拉丁文缩写速查 药代动力学常用符号速查 有效血浆渗透压计算器 乙醇摄入量计算器
医学百科,马上计算!
6.3 抑制细胞的作用 6.3.1 TS细胞的作用
70年代Gershon等首先提出TS细胞的现象。将耐受动物的脾或胸腺细胞转输给同品系正常动物后,使后者获得耐受性,又称为传染性耐受(infectious tolerance)。如果在转输前将脾细胞用抗Thy1血清加补体处理,去除T细胞,则受体动物不会发生过继性耐受。
TS细胞的作用通常是抗原特异性的,它可能是通过阻止抗原呈递,阻断TH细胞的功能。抑制B细胞分化以及阻断B细胞分化为抗体分泌细胞等环节发挥作用。
6.3.2 自然抑制细胞的作用
自然抑制(natural suppressor,NS)细胞主要抑制T细胞参与的免疫应答,无抗原特异性。这些细胞可能在新生与成年动物的耐受诱导中均起作用。NS细胞形态上为大颗粒淋巴细胞(large granularlymphocytes,LGL),见于胚胎及新生期、出生后数天内消失,抗原不能诱导,表面无T、B细胞特有的标志、对B细胞无抑制作用,成年动物照射后,先是NS细胞的再现,照射后短期内导入抗原,继之便出现TS细胞。照射促使骨髓移植物存活,可能与此种机制有关。抑制功能:混合淋巴细胞反应、TC细胞生成GVH反应。
6.3.3 巨噬细胞的抑制作用
已有文现献报告抑制性单核巨噬细胞亚群的存在。其抑制作用可能是由花生四烯酸代谢产物所介导。因阿司匹林和消炎痛能逆抑制作用。我国学者发现耐受动物的腹腔巨噬细胞有抑制同系正常动物混合淋巴细胞反应的作用,此作用并有抗原特异性。在对照组中,正常动物的巨噬细胞却能增强抗原特异性的混合淋巴细胞反应。
6.3.4 抗独特型网络的作用
每个T、B细胞克隆均具有其独特型。B细胞表面及分泌的免疫蛋白超变区抗原结合部位是独特型的物质基础。免疫球蛋白独特型结构本身具抗原性,被相应细胞克隆识别而产生抗独特型抗体可进一步诱导抗抗独特型第一系列连锁反应。对免疫应答起“自限”作用。T、B细胞参与的免疫应答均受独特特型网络的调节。有人报道给新生鼠注射抗特型抗体导致长期独型耐受,而对成年动物注射抗独特型抗体,可引起短暂的独特型耐受。
抗独特抗体所引起的耐受性,仅针对抗体的独特型部分,机体对抗原其他决定簇的免疫应答依然存在。
7 免疫耐受的临床意义
首先,免疫耐受的诱导、维持和破坏影响着许多临床疾病的发生、发展和转归。人们企图诱导和维持免疫耐受性来防治超敏性疾病、自身免疫性疾病以及移植物的排斥反应。某些感染性疾病以及肿瘤生长过程中,设法解除免疫耐受、激发免疫应答将有利于对病原体的清除及肿瘤的控制。
根据免疫耐受发生机制的多样性,对Ⅰ型变态反应患者诱导免疫耐受的可能途径是通过B克隆清除或主动抑制。处理的方法有注射表面高密度多聚耐受原、变性蛋白抗原或脱敏疗法等。
自身免疫病的发生至今认为主要与自身耐受的破坏有关,去除导致耐受破坏的因素,当然有利于对自身免疫病的防治。
现代医学虽然已将古人幻想的器官移植变为现实,但同种异体免疫排斥现象仍是器官移植中主要存在的问题。免疫抑制疗法上的进步有利于延长移植物存活,但非特异抑制所带来的副作用仍有待解决。若能将特异抑制(免疫耐受)成功地应用于临应,收到较好的效果,无疑是在此领域中的重大突破。
在麻风及慢性粘膜皮肤念珠菌病患者中,若体内出现良好的细胞免疫应答,虽抗体生成低下或甚至缺如,临床预后仍良好,并常伴随有效的防御性免疫。反之,如细胞免疫水平低下,抗体效价虽高,而预后较差,多呈进行性感染。这种分离耐受现象对感染性疾病的预后有重要影响。乙型肝炎病毒携带者伴有极轻微的肝炎病变,可能与新生期发生感染而使机体对病毒产生部分耐受性有关。
在对肿瘤患者的免疫治疗中,解除患者的免疫耐受状态也是一项有意义的措施。近年,美国两家实验室报导将一种协同 *** 因子B7的基因转染黑色素瘤细胞,并用这种转染细胞进行防治黑色素瘤的实验性研究,获得可喜的成功。为这一领域的研究开阔了新的途径。
7.1 防止器官移植的排斥反应
目前防止器官移植排斥反应主要是采取组织配型和免疫抑制的方法。虽然这些方法也有效地提高了器官移植的存活率,但由于MHC抗原的多态性,寻找组织相容性合适类型的供者是非常困难的,另外,免疫抑制剂的毒副作用也十分明显。因此诱导受者产生对供者器官特异性免疫耐受,是防止器官移植排斥反应最理想的方法。此外由于同种异体移植器官的短缺,因此,除了要开展同种异体移植耐受的研究外,更有必要开展异种移植耐受的研究。
7.2 自身免疫病和超敏反应的防治
机体免疫系统针对自身组织成分的抗体和致敏淋巴细胞在机体正常情况下可以有限度的存在,特别在老年人体内更为明显,多数属于生理现象。当自身免疫引起相应组织器官的功能障碍并出现临床症状者,称为自身免疫病。当自身组织抗原性发生改变,病原微生物交叉抗原的出现,免疫系统发育异常或免疫调节功能紊乱时,可导致自身耐受的终止,从而引起自身免疫病的发生。因此提高机体对自身成分的免疫耐受性是防治自身免疫病的根本方法。同样诱导机体对变应原产生耐受性,可消除超敏反应的发生。用口服抗原诱导免疫耐受性,已在动物试验中证明了对多种自身免疫病如糖尿病、类风湿关节炎有明显疗效,并在临床治疗糖尿病,防止I型超敏反应等疾病上也获得初步成功。
7.3 肿瘤及感染性疾病的治疗
肿瘤的发生是由于机体对突变细胞不能及时识别和清除,也即对其产生免疫耐受的结果。乙型肝炎病毒(HBV)之所以能在体内持续存在,其主要原因之一也是免疫系统对它们产生了免疫耐受。研究这种耐受产生的原因和条件,就可以设法终止机体对某些特定抗原的耐受性,从而增强机体的主动免疫监视和免疫防御的功能。
7.4 控制生殖过程
Concanavalin A或者说是ConA beads被lectin(凝集素)包裹,这个beads可以结合细胞膜/细胞核上的glycoconjugates(糖复合物)。膜是通透的,染色质可以被特异的抗体结合,在我们的这个例子里,选择的是PTMs。下一步,加入AG蛋白-micrococcal核酸酶(也叫做pAG-MNase),这个pAG-MNase结合到抗体连接的染色质上,然后通过适量浓度的Ca2+来激活pAG-MNase,从而切割DNA。被切下来的DNA游离到上清里,通过离心我们可以把这些抗体结合的DNA分离出来。
之后提取DNA,制备文库,然后进行测序。
最后就可以进行数据分析了。
CUTRUN实验可以用来分析多种蛋白的染色质图谱,包括PTMs,转录因子,染色质remodelers和染色质writers/readers。
如果你是第一次使用这个技术,请全面考虑你的细胞类型、实验条件、对照、抗体,从而解决你的生物学问题。这个试剂盒可以兼顾多种细胞类型(我现在的实验室里用的就是这个试剂盒)。
对于未固定的细胞,是研究组蛋白PTMs和转录因子理想的实验材料。这种细胞可以有多种来源,包括贴壁、悬浮细胞,组织样品。
CUTRUN也可以用lightly-crosslinked细胞(翻译成轻微固定的细胞?),样品固定一般用于研究一些染色质瞬时作用因子和某些PTMs。
当然你也可以提取nuclei,这种方法用于研究那些量很少的PTMs和蛋白。另外,当你的实验材料是免疫细胞时,也推荐提取nuclei,因为ConA beads可以激活某些免疫细胞。还有要提一下的是所有的材料都可以低温储存。
细胞数量上,推荐每个样品50万细胞。当然你需要尝试不同的细胞数量来优化你的实验。对于这个试剂盒来说,最少你可以用5000个细胞来进行实验。
对照和标准化是整个实验的关键步骤。阳性对照推荐使用H3K4me3或者H3K27me3,;阴性对照推荐使用Rabbit IgG。你还可以使用spike-in来进行标准化。
CUTRUN有6种主要试剂。这里需要注意的是,根据你的实验材料是细胞、nuclei、或者固定的细胞,所使用的试剂是不一样的(这里试剂列表就不贴了,有需要的同学可以去 试剂盒官网看具体细节 )。另外,有些试剂是需要现用现配的,官网说明书里写的很详细。
beads的活化在1.5ml tube里进行,你还需要与之匹配的magnetic rack。尽量不要用8连管,那样会损失很多。活化buffer要放置在冰上。
首先震荡beads(设置6档或7档),然后快速离心一下。然后把beads放在magnetic上,待溶液澄清了,吸走上清。然后用活化buffer清洗beads 30秒(清洗两次)。最后清洗完,还是用活化buffer重悬beads。这里要注意,beads要放置在冰上。下面是第一部分的总结图:
这一部分用的wash buffer请放置室温,防止刺激到你的细胞。这一步如果用8连管,每一管的细胞应在4.4milion。你可以首先收集你的细胞,同样是用wash buffer清洗细胞两次,最后用wash buffer重悬你的细胞。之后把beads加入到细胞悬液里。轻微震荡或用移液枪吹打。室温静置10分钟。
下面是第二部分的总结:
上一步静置后,把beads放在magnetic上,移除上清。加入冷的抗体buffer,这一步要快,防止beads干燥,但是不要太剧烈,防止细胞裂解。然后加抗体,阴性对照抗体1:10添加,阳性对照抗体1:100添加。轻微震荡,放在摇床上孵育过夜(4度,16小时)。下面是第三部分的总结:
首先快速离心8连管,把管放在magnetic上。待溶液澄清,移除上清。加入冷的dinitonin buffer。清洗2遍。清洗后用dinitonin buffer重悬beads。
pAG-MNase和digitonin buffer应放置在冰上。在样品里加入pAG-Mnase,室温孵育10分钟,快速离心,放置magnetic上,移除上清。使用digitonin buffer清洗beads两遍。然后用digitonin buffer重悬beads。
把样品放在冰上,加入CaCl2,这一步很关键,因为Ca会活化pAG-MNase,轻微震荡后,摇床上4度孵育2小时。之后加入stop buffer。如果你想加入spike-in,那么加完stop buffer后可以加入spike-in DNA。
37度10分钟。之后把tube放在magnetic上,把上清液移到新的管里。之后使用DNA purification kit。
上一步纯化DNA后,推荐10ul体积洗脱。使用1ul进行Qubit检测浓度。一般来说,如果每个样品的细胞数约0.5个million的话,下面有一些浓度参考:
下面就是制备文库了。就是跑PCR。这里要注意的是,如果你要研究的是转录因子,那么你要优化你的PCR条件,因为转录因子的文库片段小于120bp。然后使用bioanalyzer来检测片段富集:
最后就是测序了。一般每个样品3-5个million就可以了。
上面已经提到了,如果你的细胞是免疫细胞,要提前提取nuclei,因为ConA beads上的lectin在结合细胞的时候,会对免疫细胞有影响。pAG-MNase会通过核孔进入到核中。需要注意的是,digitonin buffer浓度要保持0.01%,防止beads粘附到tube上。
需要注意的是,我们平时做ChIP-seq的交联方法是不适用于CUTRUN的。这里使用的是lightly crosslinking。
这里要注意的是,冻存细胞是90%培养基+10%DMSO中放置在-80度里保存的。不要用液氮快速冷冻你的样品,因为会使你的细胞裂解、染色质外漏,会导致你的背景信号非常高。在进行CUTRUN步骤之前,37度快速解冻细胞。
对于贴壁细胞,不要用胰酶消化细胞!!!因为细胞表面的glycoprotein要结合beads。所以贴壁细胞只能用“刮”的。
问问
免疫学在现代的实际应用是什么?
最佳答案
免疫学的实际应用
人工免疫和生物制品
免疫学作为研究手段
与免疫系统有关的疾病
人工免疫和生物制品
种牛痘预防天花是人类学会应用免疫方法预防疾病的第一个先例,至今已有200多年历史。这个方法很有效 ,所以一度危害很大的病毒感染疾病天花在人类社会几近绝迹。近代,已能大规模工业化生产用于人工免疫的各种制品,统称生物制品。生物制品大量用于传染性疾病的预防,治疗和诊断。
1)人工自动免疫生物制品
生物制品本身是抗原成分,注射抗原成份,使人体产生相应抗体,因而对相应的病毒或细菌有了抵抗能力。传统的抗原成份有两类:(1)活疫苗——预防结核病的卡介苗是活的结核杆菌,但经过处理,变成弱毒或无毒,注射时仍应当控制剂量。常用的脊髓灰质炎疫苗,麻痹疫苗均为活疫苗。(2)死疫苗——百日咳疫苗,伤寒疫苗等均为死菌体注射,安全性强。但需多次接种。后来又发展起类毒素,亚单位疫苗等新品种。近年来,基因工程疫苗逐渐走上应用。在找到病原微生物表面抗原蛋白的基础上,可以用基因工程方法,把一种甚至几种表面抗原蛋白的基因克隆出来,大量表达生产,收到安全性好,效价高,多重抗性等效果。例如,把流感病毒血凝素基因加上单纯疱疹病毒基因,组合到牛痘苗基因组中去,制得可用针刺法接种的多价疫苗。
2)人工被动免疫生物制品
生物制品本身是抗体(或含抗体的抗血清)成份,注射抗体成份,使人体被动地获得对相应病原菌或毒素蛋白的抵抗能力。其中专一性较强的是各种抗血清。如抗狂犬病毒血清,抗乙脑病毒血清,抗破伤风毒素抗血清。而免疫球蛋白制品专一性不强。如:胎盘球蛋白或血浆 r —球蛋白的注射,实际上是使人体增加非专一性的抗体成分。
免疫学作为研究手段
由于抗体—抗原结合的专一性,人们在研究中常常制备针对所研究的蛋白质的抗体,用于目的蛋白质的检测和分离等方面。有时,也可以制备针对一段较小肽链或糖链的抗体,但是,制备时要加上佐剂以增强免疫效应;或把较小肽链连接到一个大的蛋白质分子上去,以增强免疫原性,这个较小肽链就称为半抗原。酶联免疫吸附法(简称ELISA)是常用的测定微量蛋白质的免疫方法,专一性强,灵敏度高,可检测出少至10-9克蛋白质。
单克隆抗体技术
面对愈益提高的对抗体的需求——数量要多,质量要高,传统方法暴露出固有的不足:一方面,这套操作程序太繁琐,一只只动物进行免疫,抽血,难以大批量生产;另一方面,所得到的抗血清,往往是多克隆的,即不但有针对目的抗原的抗体,也有针对非目的抗原的抗体,就针对目的抗原的抗体来讲,一个大的蛋白质常常有若干个抗原决定簇 ,所得到的抗体也是针对各个抗原决定簇混杂着的。
单克隆抗体技术的问世解决了上述两个难点。
用目的抗原(例如抗原A)免疫过的小鼠,脾脏中贮存有大量 B 细胞,这些 B 细胞能分泌针对抗原 A 的抗体,但是这些成熟了的 B 细胞不能再分裂繁殖。淋巴瘤细胞具有无限繁殖的能力,但是它们不能产生专一于 A 抗原的抗体。两种细胞融合,产生出的杂交瘤细胞,具有双方的长处,既能分泌专一于抗原 A 的抗体,又能无限增殖。
与免疫系统有关的疾病
1)过敏与移植排斥
这两种情况,严格来讲是免疫系统的正常反应。有的人对花粉过敏,每到花粉季节,就发生哮喘,有的人对一些蛋白质过敏,吃后身上发出“风疹块”,有的人对蜜蜂蜂毒过敏,遭蜜蜂螫后可引起休克。这些情况都是起源于外源物(花粉,蛋白质等)激活 B 细胞,B 细胞产生的抗体作用于肥大细胞,使肥大细胞分泌过量的神经递质—组胺。许多过敏反应是短期内身体某部分组胺过多引起的。所以许多脱敏药物都和对抗组胺的效应有关。
皮肤,器官和肢体移植通常会引起人体的免疫排斥反应,应该说这是正常的身体对外来物的排斥和攻击反应。为了移植成功,就需要使用免疫抑制药物,把正常的免疫反应抑制下去,给移植物以存活的机会。
2)自身免疫疾病
按照克隆选择学说,人体的免疫活性细胞在发育的过程中,那些针对自身蛋白质的淋巴细胞克隆就被消除了。所以,成熟的 B 细胞不会分泌针对自身蛋白质的抗体,成熟的 T 细胞也不会攻击自身正常的细胞。由于某种特殊情况的出现,免疫活性细胞错误地向自身的组织和器官发起攻击,这就是自身免疫疾病。常见的自身免疫疾病有:风湿性关节炎,红斑狼疮 ,风湿热等。一部分糖尿病人,也是因为自身免疫系统错误地攻击破坏胰岛细胞,使胰岛素不能正常分泌所致。目前,对自身免疫疾病的理解还很肤浅,发病机理并没有真正弄清楚,治疗也不甚得力。
3)免疫功能低下症
免疫功能低下或缺失,可以来自几个方面原因,其结果是使患者抵抗力减弱,易受感染。有的孩子生下来就患有严重综合型免疫缺失症(SCID)。因为缺失一个编码腺嘌呤脱氨酶(ADA)的基因,B 细胞和 T 细胞都不能正常发育成熟,这样的孩子生下来就得放在无菌隔离(参见第六讲)。1990 年进行了一次针对 SCID 病儿的基因治疗,从患儿的骨髓中抽出骨髓细胞, 用基因工程手段,以逆转录病毒为载体把 ADA 基因,送入骨髓细胞,ADA 基因整合到细胞染色体中去 ,骨髓细胞发育成正常的淋巴细胞。再注射回患儿的骨髓中去。治疗收到良好效果,4 岁的患儿有了正常的淋巴细胞,具备正常抵抗力,可以走出隔离室,和别的孩子一起上幼儿园(参见第六讲有关图片)。免疫功能低下也可能由肿瘤引起。癌细胞在发展中,常常分泌一些抑制免疫的成分,所以癌症病人通常表现免疫功能低下。手术切除除了避免扩散外,也起到清除抑制免疫的根源的作用。通常手术切除以后,加用一些激活和提高免疫功能的药物。术后进行的化疗,对骨髓细胞有较强破坏力。所以,化疗也会引起免疫功能低下,更有必要同时使用提高免疫功能的药物。值得一提的是,情绪会影响免疫功能。乐观向上的积极的精神状态,有助于免疫功能正常发挥,而情绪压抑悲伤会促使免疫功能低下。这正反映了大脑中枢对全身机能的调节作用。
4)爱滋病
爱滋病是获得性免疫缺失综合症(AIDS)的简称。一般认为,爱滋病的起因,来自一种人免疫缺失病毒(HIV)对 T 细胞的侵入。HIV 病毒侵入 T 细胞后,还能结合在寄主细胞染色体上,不断增殖。其后果是使病人失去免疫能力。爱滋病是一种性传播疾病。对爱滋病和 HIV 病毒的研究,在世界范围内引起极大重视。
查看全文
2017-01-16 10
其他1条回答
高中生物细胞学说内容这么学习_别等高中之后后悔!
高中生物细胞学说内容孩子成绩差,下滑?思路单一?_补救方法大全!知晓这些方法,成绩提高到600分,你也可以轻松逆袭,
jyx.usbanx.com广告
怕老就来细胞剥离_专注再生美学_掌握剥离核心技术细胞剥离
细胞剥离逆龄抗衰,帮你夺回人生中美好的时光,再生美,掌握核心技术水剥离,个性定制,自然和谐,安全无痕.
拨打:客服在线免费答疑
zaishengmei.wsd.so广告
免疫学在现代的实际应用是什么?优质推荐
查询免疫学在现代的实际应用是什么?,我们为您推荐更多优质商家,资质保证,放心选择有保障!
商家列表广告
免疫治疗
免疫系统
免疫诊断
免疫学
免疫学与临床有何关系
各种免疫学方法
免疫系统的功能有三种
免疫的概念
免疫功能紊乱怎么引起的
免疫系统的三大功能
免疫学论文
自身免疫病例子
免疫中国免疫学杂志免疫学杂志免疫学的应用
上滑了解更多
¥2FT0bmb5p6d¥
目录
1 拼音 2 英文参考 3 抗体的发现 4 抗体的理化性质 5 抗体的生物学活性 6 抗体的制备
6.1 多克隆抗体 6.2 单克隆抗体 6.3 基因工程抗体
附:
* 抗体药品说明书
1 拼音
kàng tǐ
2 英文参考
antibody
抗体是机体在抗原物质 *** 下,由B细胞分化成的浆细胞所产生的、可与相应抗原发生特异性结合反应的免疫球蛋白。
抗体分子(antibody,Ab)是由浆细胞合成和分泌的,而每一种浆细胞克隆可以产生一种特异的抗体分子,所以血清中的抗体是多种抗体分子的混合物,它们的化学结构是不均一的,而且含量很少,不易纯化,是抗体分子结构分析的困难。
3 抗体的发现
在免疫学发展的早期人们应用细菌或其外毒素给动物注射,经一定时期后用体外实验证明在其血清中存在一种能特异中和外毒素毒性的组分称之为抗毒素,或能使细菌发生特异性凝集的组分称之为凝集素。其后将血清中这种具有特异性反应的组分称为抗体(antibody,Ab),而将能 *** 机体产生抗体的物质称之为抗原(antigen,Ag)。由此建立了抗原与抗体的概念。
1890年德国学者Behuing和日本学者北里用白喉杆菌外毒的组分称为抗毒素,这是在血清中发现的第一种抗体。这种含有抗体的血清称之为免疫血清。
4 抗体的理化性质
1.抗体是球蛋白 早在40年代初期Tiselius和Kabat就证实了抗体活性与血清丙种球蛋白组分相关。他们用肺炎球菌多糖免疫家兔,可获得高效价免疫血清。然后加入相应抗原吸收以除去抗体,将去除抗体的血清进行电泳图谱分析,发现丙种球蛋白(γG)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。
图21 兔血清电泳分离图
其后,经对不同免疫血清的电泳分析,超速离心分析和分子量测定等方法,发现大部分抗体活性存在于γ球蛋白内,但有小部分抗体活性可存在于β球蛋白内。它们的离心常数分别为7S和平共处9S,分子量分别为16万和万。因此它们分别被命名为7Sγ球蛋白分子(16万)19S,β2巨球蛋白分子(β2M,90万)和β2A球蛋白分子,所以从早期对抗体性质的研究证明抗体不是由均质性球蛋白组成,而是由异性球蛋白组成。
图22 不同类免疫球收白的电泳分离图
2.免疫球蛋白为了准确描述抗体蛋白的性质,在60年代初提出将具有抗体活性的球蛋白称为免疫球蛋分子(immunoglobulin,lg)。γ球蛋白则必称为IgG,β2M称为IgM,而β2A称为IgA。其后又相继发现二类Ig分子,分别称为IgE和IgD。故在血清中现已发现有五类免疫球蛋白分子,它们的结构与功能是各不相同的。
5 抗体的生物学活性
1.抗体与抗原的特异性结合 *** 抗体产生的物质称为抗原,抗体分子与其相应的抗原发生结合称为特异性结合。例如,白喉抗毒素只能中和白喉杆菌外毒素,而不能中各破伤风外毒素,反之亦然。
2.抗体与补体的结合在一定条件下,抗体分子可以与存在于血清中的补体分子相结合,并使之活化,产生多种生物学效应,称之为抗体的补体结合现象,揭示了抗体分子与补体分子间的相互作用。
3.抗体的调理作用抗体的第三种功能是可增强吞噬细胞的吞噬作用。在体外的实验中,如将免疫血清中加入中性粒细胞的悬液中,可增强对相应细胞的吞噬作用,称这种现象为抗体的调理作用。自此揭示了抗体分子与免疫细胞间的相互作用。为了说明抗体分子这些生物学功能,必须进一步了解抗体分子的结构与功能的关系。
6 抗体的制备
为了研究抗体的理化性质、分子结构与功能,以及应用抗体于临床疾病的诊断、治疗及预防都需要人工制备抗体。目前,根据制备的原理和方法可分为多克隆抗体、单克隆抗体及基因工程抗体三类。
6.1 多克隆抗体
大多数抗原是由大分子蛋白质组成,但只是抗原上有限部位的特殊分子结构能与其相应抗体结合,称此部位为抗原决定簇(antigenic determinant)或表位(epitope)。
一种天然抗原性物质(如细菌或其分泌的外毒素以及各种组织成分等)往往具有多种不同的抗原决定簇,而每一决定簇都可 *** 机体一种抗体形成细胞产生一种特异性抗体。
在机体淋巴组织内可存在千百种抗体形成细胞(即B细胞),每种抗体形成细胞只识别其相应的抗原决定簇,当受抗原 *** 后可增殖分化为一种细胞群,这种由单一细胞增殖形成的细胞群体可称之为细胞克隆(clone)。同一克隆的细胞可合成和分泌在理化性质、分子结构、遗传标记以及生物学特性等方面都是完全相同的均一性抗体,亦可称之为单克隆抗体。
在早期传统的抗体制备方法是将一种天然抗原经各种途径免疫动物,由于抗原性物质具有多种抗原决定簇,故可 *** 产生多种抗体形成细胞克隆,合成和分泌抗各种决定簇抗体分泌到血清或体液中,故在其血清中实际上是含多种抗体的混合物,称这种用体内免疫法所获得的免疫血清为多克隆抗体,也是第一代抗体。由于这种抗体是不均一的,无论是对抗体分子结构与功能的研究或是临床应用都受到很大限制,因此如何能获得均一性抗体成为关注的问题。
6.2 单克隆抗体
体内免疫法很难获得单克隆抗体(monoclonal antibody,McAb)。如能将所需要的抗体形成细胞选出并能在体外进行培养即可获得已知特异的单克隆抗体。1975年德国学者Kohler和英国学者Milstein将小鼠骨髓瘤细胞和经绵羊红细胞(sheep rue blood cell),SRBC)免疫的小鼠脾细胞在体外进行两种细胞融合,结果发现部分形成的杂交细胞既能继续在体外培养条件下生长繁殖又能分泌抗SRBC抗体,称这种杂交细胞系为杂交瘤(hybridoma)。这种杂交瘤细胞既具有骨髓瘤细胞能大量无限生长繁殖的特性,又具有抗体形成细胞合成和分泌抗体的能力。它们是由识别一种抗原决定簇的细胞克隆所产生的均一性抗体,故称之为单克隆抗体。应用杂交瘤技术可获得几乎所有抗原的单克隆抗体,只要这种抗原能引起小鼠的抗体应答。
这种用杂交瘤技术制备的单克隆抗体可视为第二代抗体。
单克隆抗体由于纯度高、特异性强、可以提高各种血清学方法检测抗原的敏感性及特异性,但单克隆抗体多为双价抗体,与抗原结合不易交联为大分子集团,故不易出现沉淀反应。单克隆抗体的应用大促进了对各种传染病和恶性肿瘤诊断的准确性。
单克隆抗体亦可与核素、各种毒素(如白喉外毒素或篦麻毒素)或药物通过化学偶联或基因重组制备成导向药物(targetting drug)用于肿瘤的治疗,是一种新型免疫治疗方法,有可能提高对肿瘤的疗效。
单克隆抗体亦可用于对各种免疫细胞及其它组织细胞表面分子的检测,这对免疫细胞的分离、鉴定及分类及研究各种膜表面分子的结构与功能都具有重要意义。
6.3 基因工程抗体
自1975年单克隆抗体杂交瘤技术问世以来,单克隆体在医学中被广泛地应用于痢疾的诊断及治疗。但目前绝大数单克隆抗体是鼠源的,临床重复给药时体内产生抗鼠抗体,使临床疗效减弱或消失。因此,临床应用理想的单克隆抗体应是人源的,但人人杂交瘤技术目前尚未突破,即使研制成功,也还存在人人杂交瘤体外传代不稳定,抗体亲合力低及产量不高等问题。目前较好的解决办未能是研制基因工程抗体,(geically engineering antibody)以代替鼠源单克隆抗体用于临床。
基因工程抗体兴起于80年代早期。这一技术是将对Ig基因结构与功能的了解与DNA重组技术相结合,根据研究者的意图在基因水平对Ig分子进行切割、拼接或修饰,甚至是人工全合后导入受体细胞表达,产生新型抗体,也称为第三代抗体。
关键词:免疫细胞分离的危害