造血干细胞移植后血象变化图(造血干细胞移植后血象变化图表)
我们将补充所有关于造血干细胞移植后血象变化图和造血干细胞移植后血象变化图表的知识,以更好地理解两者之间的差异和关系。
白血病人做造血干细胞移植后,血象需要多长时间才会恢复正常!
白血病的类型不同、移植前预处理方案不同、移植的类型不同(比如骨髓移植,外周血干细胞移植、脐带血移植等)、患者移植前的病情不同,等待,多种因素均影响移植后的血象恢复时间。不过,如果不考虑其他因素,一般来说,血象恢复的时间如下:
(仅供参考!!)
从骨髓移植(BMT)日起,中性粒细胞多在4周内回升至O.5×10^9/L,而血小板回升至≥50×10^9/L的时间多长于4周。应用G-CSF,可缩短中性粒细胞0.5×10^9/L的时间5~8天。外周血干细胞移植(PBSCT)造血重建快,中性粒细胞和血小板恢复的时间分别为移植后8~10天和10~12天。脐血移植(CBT)造血恢复慢,一项562例无血缘CBT的结果显示:81%的患者于移植后42天中性粒细胞恢复,而85%的患者血小板恢复延迟至180天,并有10%的CBT未能植活。
患者得到造血干细胞后就会一直造血吗
造血干细胞移植术包括自体骨髓移植、异基因骨髓移植、自体外周血干细胞移植、异基因干细胞移植,是目前公认的治疗血液病的有效方法。从预处理至输入造血干细胞植活并重建造血功能期间,骨髓象、血象发生了极大变化,并且有一段无髓期,在这段时间里患者的白细胞、血小板都会降到极低的程度。
据文献得知:
造血干细胞移植后第1-2周骨髓呈极度抑制,第3周出现恢复征象,第5-6周骨髓造血恢复正常;
红系恢复中最先出现中、晚幼红细胞,粒系以原始、早幼粒先出现,巨核系统恢复最慢;
平均血小板体积在预处理后明显下降,随着造血功能恢复而逐渐回升,早于粒细胞数、血小板数回升。
单细胞转录组分析—追踪移植后造血干细胞的分化
由于技术上的限制,移植的造血干细胞(HSCs)在预处理的宿主体内后不久的表现还没有被研究过。在这里,利用单细胞RNA测序,我们首先获得了28种造血细胞类型的基于转录组的分类。然后,我们将它们与功能分析相结合,跟踪受者移植后第一周内免疫表型纯化的造血干细胞的动态变化。根据我们的转录分类,大多数骨髓和脾脏中的HSCs成为多能祖细胞,偶尔也有一些HSCs产生巨核红细胞或髓系前体细胞。平行的体外和体内功能实验支持了在第一周没有大量HSC扩增的情况下稳健分化的范式。因此,这项研究揭示了早期在清髓受者中移植 HSC 的动力学和命运选择,对造血干细胞和其他干细胞的临床应用具有一定的指导意义。
造血干细胞 (HSC) 能够产生造血系统 ,从而为患有许多破坏性疾病 3 的患者提供再生医学(移植)的宝贵来源。在临床实践中,移植的干细胞通常会遇到患病或受损的受体环境。尽管存在多种疾病,但目前针对患者的移植方案涉及在移植前使用化学治疗剂或全身照射进行预处理。因此,在这些病理受体的早期阶段,与微环境(利基)的适当接触和移植 HSC 的有序繁殖对于移植的长期植入和最终成功至关重要。过去 已经广泛研究了移植 HSC 的归巢、寄宿、定位、生态位相互作用和增殖。尽管认为大量的 HSC 在长期移植过程中会达到稳态水平,但移植后 HSC 的行为在很大程度上是未知的。
在小鼠移植模型中,早在 HSC 移植后 7-9 天就首次观察到血小板生成。鉴于经典的逐步造血级联模型,HSC 必须快速响应清髓宿主环境。与 HSCs 在生命周期中仅在有限时间内分裂的稳态条件相反,HSCs 应该在清髓受体中经历剧烈增殖以满足移植后造血再生的迫切需要,然后逐步分化为多个谱系 。然而,该模型的有效性从未得到严格或全面的研究,这主要是由于技术困难,例如移植后不久可以收集的供体来源细胞数量非常有限。
单细胞 RNA 测序 (scRNA-seq) 技术的快速发展提供了一个强大的工具和前所未有的机会来定义细胞分类、跟踪分化并以单细胞分辨率揭示任何给定的可分离异质细胞群的转录网络。因此,我们使用 scRNA-seq 来全面表征造血系统中的 28 个细胞群,并应用基于转录组的分类来跟踪 HSC 移植后的供体来源细胞。
作为研究历史最长、临床应用最为广泛、治疗效果最为确切的成体干细胞之一,造血干细胞(HSC)依靠其“SMART”特性(S: Self renewal, M: Multi-lineage differentiation, A: Apoptosis, R: Rest/quiescence, T: Trafficking)维持整个造血系统的动态平衡。HSC移植也因此广泛应用于多种血液系统疾病和自身免疫性疾病以及多种遗传性疾病的治疗。在临床实践中,通常在移植后不同时间点采集受者的外周血或者骨髓来评估移植物的植入效率及造血恢复情况。但对于HSC在骨髓归巢后如何增殖、分化并重建整个造血的动态过程却知之甚少。这方面研究对解决目前临床HSC移植植入不良十分重要。
可能由于本研究开始较早,单细胞测序水平还不够高,本文淡化了单细胞测序的细胞数量等信息。
造血系统的28个免疫表型的相应的测序数据
作者首先将28个免疫表型定义的造血细胞群体(immunophenotype-based haematopoietic cell populations)根据转录组特征定义为21个转录组细胞群(transcriptome-based haematopoietic cell populations),并将测序结果与已发表的造血细胞测序数据进行了比较,结果显示相同细胞类型的测序数据结果高度吻合,证明了测序数据质量的可靠性。
作者将高度异质性的5个免疫表型定义的HSC群体和9个免疫表型定义的MPP群体根据转录组特征重新定义为3个tHSC亚群(tHSC1、tHSC2和tHSC3)和5个tMPP亚群(tMPP1、tMPP2、tMPP3、tMPP4和tMPP5),并对这些重新定义的HSC以及MPP在自我更新、增殖潜能以及分化倾向方面的差异进行了比较,发现tHSC1和tHSC2为处于造血级联最顶端的自我更新潜能最强的HSC, tHSC3主要为淋系偏向的HSC。
tMPP1为最靠近HSC的多能祖细胞亚群,而tMPP2和tMPP3主要向巨核红系以及髓系分化,tMPP4细胞周期不活跃且分化潜能不显著,而tMPP5则主要向淋系分化。这是目前成体小鼠各类造血细胞较为精细的单细胞转录组定义和最全面的分类体系。
图1a应该是放错了图片
相同策略,9种免疫表型多能性祖细胞(iMPPs)被分为5个不同转录特征群:tMPP1、tMPP2、tMPP3、tMPP4和tMPP5(图2a)。iMPPs和tMPPs的转录组成均表现出较大转录异质性(图2b,c)。
轨迹分析,tHSC3在轨迹图上与tHSC1和tHSC2明显不同(图2d),之前研究和我们的数据分析显示,tHSC3具有长期的淋巴细胞偏倚重建潜能。因此,tHSC3可能在功能上更多地与短期HSC或MPPs相关。tMPP1细胞在细胞周期中比tHSCs更活跃,分化轨迹分析表明,它们的分化潜能接近(图2d)。总的来说,该轨迹图在上半部分与造血干细胞到MPPs的连续过程一致,在下半部分有明确的髓系和淋巴系分支。
因此,这21个转录组定义的细胞簇是评估应激条件下细胞特性的有力参考工具,特别是当细胞表面标记不稳定或细胞产量低导致移植后不久无法对移植的造血干细胞进行详细表型分析时。
基因表达谱将祖细胞,红细胞,巨核细胞,粒细胞,单核-巨噬细胞和淋巴细胞聚为一类,称为tCP1-3(祖细胞),tME1-3 (巨核细胞-红系细胞),tGM1-3 (粒细胞-单核细胞-巨噬细胞)和tLym1-4 (淋巴细胞-淋巴细胞)。然后根据免疫表型细胞计算这些群体的组成。转录组分析将28个造血群体分为21个群,每个簇都特异性表达与功能相关特征的独特生物学过程富集的基因。
基于上述转录组所有造血细胞类型的特征,研究者试图追踪受辐射个体移植后HSC的性质。
从 绿色荧光蛋白 (GFP)转基因小鼠(B6-Ly5.2, GFP+)中纯化的HSC (CD201+150+48−45+Sca-1+c-Kit+(ESLAMSK))共1000-4000个,与3×105个竞争细胞(B6-Ly5.2, GFP-)一起移植到受辐射个体(B6-Ly5.2)中。
在移植后第1、3、5和7天收集供者GFP+细胞(57个移植受者的1031个细胞),开展scRNA-seq(图3a)。
供体GFP+细胞采集率极低(第1、3、5和7天分别为0.005±0.007%、0.006±0.004%、0.012±0.009%和0.22±0.292%);具有代表性的流式细胞图见图3b。与移植后ESLAMSK细胞相比,供体细胞整体基因表达早在移植后第1天就发生显著变化。
通过对转录因子(TF)调控因子的分析,进一步阐明转录因子网络的动态转录活性。编码自我更新相关TFs基因(如Egr1、Egr3、Gata2和Hmga2)逐渐下调。髓系细胞(Cebpa、Cebpab、Cebpad和Cebpae)和红细胞-巨核细胞(Irf2)相关的TFs基因在移植后第1天表达上调并共表达。
这些结果表明, 移植的造血干细胞和/或其后代表现出弱自我更新特征,并在移植后的非常早期阶段采用一种转录程序将其限制在一个或多个谱系 。
根据稳态下细胞类型特异性的特征基因将移植细胞分为21个细胞簇,这些细胞身份相关基因在移植后的单个细胞中持续表达。动态平衡状态下所有造血细胞的t分布随机邻域嵌入图(图3c)显示,移植后1周内tHSCs、tMPPs、tMEs和tGMs再生,而tCPs和tLyms很少(图3d)。 与注射tHSCs相比,移植后每天的细胞组成清楚表明移植的HSCs定向成为tMPPs,甚至在第1天产生少量tMEs和tGMs (图3e,f)。从移植后1周内的细胞动力学来看,tHSCs(主要是tHSC1和tHSC2)的比例逐渐下降,而tMPPs是主要的人群,甚至在第1天和第7天出现一些tMEs和tGMs(图3f,g)。每个代表性受体的细胞重组表明,tMPPs在移植后不久即成为主要的细胞类型。第1天和第7天出现部分谱系性细胞,特别是tMEs(17个受者中有6个)和tGMs(8个受者中有2个)(图3h)。为排除第1天采集的细胞存在取样偏倚可能性,另收集137个供体骨髓和脾脏细胞,转录组的细胞分类结果与图2g所示一致,符合移植的造血干细胞在1周内立即分化为祖细胞和谱系细胞(tMEs和tGMs)的模型。
移植后HSC第1天的转录组快速变化促使研究者思考转录组改变是否依赖于细胞分裂。为此,将CellTrace Violet染色的供体HSC移植到受体小鼠体内,移植后收集发现,大多数供体细胞在第1天保持不分裂,但从第3天到第7天逐渐分裂(图4a-c),表明造血干细胞MPP转录组谱不依赖于细胞分裂。
进一步分析移植后tHSC1和tHSC2的转录组变化(简称TxtHSC1/2)。移植前相比, tHSC1和tHSC2表现出造血干细胞信号的下调(图5a)。tHSC1的增殖特征减弱,而tHSC2的增殖特征增强(图5a,b)。
对于假定的分化潜能,tHSC1在巨核细胞系、红系和髓系分化上富集降低。相反,tHSC2被诱导向红系和髓系分化(图5c)。与稳态下的同类相比,TxtHSC1/2在淋巴、凋亡或自噬信号富集方面没有差异(图5c,附图8f)。基于此作者认为tHSC2是处于活化状态的HSCs满足分化功能;tHSC1处于静息状态,维持干细胞池。这一模式与之前功能性研究一致,表明功能性HSC的两种不同细胞状态。
接下来研究tMPPs,它是移植后HSCs快速分化而来的主要成分。tMPP1-5不同亚群的变化过程(图5d)。tMPP2和tMPP3的频率增加伴随着S/G2/M细胞周期信号的百分比升高。
tMPP1在第3天占供体细胞的30%以上,在第7天持续下降至5%以下。tMPP2在第5天占40%以上,在第7天下降到20%。tMPP3的频率最初小于5%,在第7天急剧上升到30%。tMPP4维持在低频率,而tMPP5在移植后第5天逐渐升高到20%(图5d)。tMPP2和tMPP3的频率增加伴随着S/G2/M细胞周期信号的百分比升高。
GSEA利用特定基因进一步研究tMPPs的分化谱,并与相应的对照在稳态条件下进行比较(图5e)。tMPP1表现出更高的增殖特征,有利于向红系和髓系分化,并抑制巨核细胞。tMPP2对髓系基因呈正富集,对巨核基因呈负富集。tMPP3和tMPP4分别表现为红系和巨核基因富集。与巨核细胞、红系细胞和髓系细胞相关的基因集在tMPP5中富集,而淋巴潜能被抑制。
具体来说,红细胞( Phb2 和 Nfia )、巨核细胞( Pf4 和 Vwf )、髓系细胞( Spi1 和 Cebpd )和淋巴细胞( Flt3 和 Satb1 )的代表性TF或标记基因在不同的tMPPs上表达可能触发移植后谱系分化。
与稳态下相比,移植后tMPPs(简称TxtMPPs)表现出应激反应相关基因 Ifitm3 、 S100a6 和 Serpina3g 的上调,B细胞分化基因 Ramp1 、 Cd52 和 Pnp 的下调(图5f,g)。氧化磷酸化、剪接体和RNA转运途径与1周内tMPPs的动态变化有关。表面蛋白CD201、CD150和CD48的表达变化支持移植后1周内的细胞类型转变(图5h)。总的来说,这些结果表明,Tx tMPPs中髓系和红系分化稳定,而淋巴细胞分化受到抑制。
使用单细胞集落形成试验和二次移植来检测供体细胞移植后的植入和分化潜能。与新鲜HSC相比,供体细胞的集落形成率降低(第1、3、5和7天,供体细胞的集落形成率分别为12.93±5.85%、23.95±6.66%、10.05±3.95%和21.2±4%,而新鲜HSC的集落形成率为62.34±8.34%)(图6a)。细胞从第1天和第3天生成50-80%非常小(直径0.3毫米)和小(直径在0.3-1毫米)克隆,而细胞从第5天和第7天生成50-60%中型(直径1-2毫米)和大型(2毫米直径)克隆(图6b)。此外,第1天和第3天供体细胞的多谱系菌落(中性粒细胞、巨噬细胞、红细胞和巨核细胞)与新鲜HSC相当,而第5天和第7天供体细胞的多谱系潜能略有下降(图6c)。重要的是,第1天从受体骨髓和脾脏中回收的GFP+细胞在二次移植中表现出持续的多谱系植活度。同时,在第3、5、7天恢复的细胞中,即使收集到更多的细胞,重构效率和植入水平也逐渐下降(图6d)。这些数据表明,移植后HSC匹配的概率立即下降,与scRNA-seq分析的结果一致。尽管大多数注射的造血干细胞在其转录组谱基础上类似MPPs,第1天(未分裂)收集的细胞仍然具有HSC的长期移植能力。
令人惊讶的发现是移植后造血干细胞tMEs和tGMs的早期分化(图3g,h)。在供体总细胞中,tMEs和tGMs的频率在第1天达到约10%,然后在第3天和第5天急剧下降到0%,但在第7天再次上升到10%(图7a)。
流式细胞术分析显示,第1天和第7天的Ter119+和Mac-1+Gr-1+细胞分别占20%和10%(图7b)。这些数据表明,移植后HSC可能最早在第1天通过“旁路”途径直接程序化进入红系和髓系,这与最近的一项研究一致,即HSC分化可以发生在第一次细胞分裂之前。
单细胞反转录定量PCR (qRT-PCR)显示,供体Ter119+细胞在第1天表现出更高的干细胞相关基因( Kit 、 Slamf1 、 Fgd5 和 Gata2 )、巨核细胞( Pf4 和 Selp )和红系基因( Lmo2 和 Tal1 )的表达。供体Mac-1+Gr-1+细胞表现出类似髓系基因表达( Csf1r 、 Csf2rb 和 Csf3r )(图7c)。此外,免疫应答相关基因第1天在tMEs中高表达,第7天靶向膜蛋白相关基因的表达水平升高(图7d)。这些数据表明,tMEs第1天的不成熟状态可能是由微环境中应激反应触发。与外周血(PB)血清中稳态对照相比,红细胞生成素(EPO)和粒细胞集落刺激因子(G-CSF)这两种主要的生长因子分别参与红细胞分化和髓系分化,在移植后红细胞生成素(EPO)和粒细胞集落刺激因子(G-CSF)的蛋白水平显著升高(图7e,f)。升高的细胞因子水平可促进有限的谱系分化。因此,移植后tMPP2、tMPP3、tCP1、tME1和tGM1中Ifitm1的表达显著增加,表明红系和髓系分化程序激活。总的来说,这些数据证实移植后造血干细胞和/或骨髓基质细胞存在早期的红细胞和骨髓细胞偏倚分化,但这些“分化”细胞仍然保持某些未成熟的特征,它们的生理作用和意义,尤其是在压力或损伤条件下,值得进一步研究。
综上,本研究基于 免疫表型、转录组特征和功能 三个方面 更加全面地定义了造血系统21个细胞群体,建立了稳态下造血细胞转录组图谱,首次揭示了HSC移植后早期动态变化过程。
病人已经做完移植手术快二十天,白细胞在慢慢地长了,可是红细胞,血小板不仅没起色,还 往下降,没 天还
一、先给你说一下造血干细胞移植以后为什么输血小板的原因:
1.输血原则
骨髓移植的输血十分复杂。移植全过程的输血若非免疫干预所需,应尽可能选择对发生同种免疫反应影响相对较小的血液制剂,如去白细胞、辐照和洗涤的血液制剂。以降低因输血给移植带来的不良反应,保证移植成功率。
2.血液品种的选择
(1)红细胞制剂:移植后应保持红细胞压积(HCT)在0。25~0。30,以维持机体功能。
(2)血小板制剂:骨髓移植时,输血小板和红细胞两种制剂之比约为1:10。骨髓移植后血小板计数<15×10 9/L时,应给予预防性输注浓缩血小板制剂,有出血倾向者应及时足量输注浓缩血小板制剂。输注时应尽可能选择输注HLA抗原相合的单一供者的机采血小板制剂或使用经辐照的血小板制剂(每份血小板制剂所含白细胞<1×106),以防止同种免疫的发生及血小板输注无效。
(3)洗涤血液制剂:洗涤的血液制剂在骨髓移植过程中常用,尤其是支持性输血时。
(4)辐照的血液制剂:给移植病人输注经辐照的血液制剂(包括全血,红细胞、粒细胞、血小板等)可有效的预防移植物抗宿主病(GVHD)。
二、再给你说一下移植成功与否:
造血干细胞移植( hematopoietic stem cell transp lantation, HSCT)作为目前最有效、最有发展前途的一种治疗恶性血液病、严重免疫缺陷病和骨髓造血功能衰竭等疾病的手段,已越来越被广泛应用于临床,特别是异基因造血干细胞移植(Allo-HSCT)已经挽救了许多患者的生命。
但目前移植物抗宿主病( graft versus host disease, GVHD)仍是骨髓移植或造血干细胞移植相关死亡的主要原因。
难治性移植物抗宿主病(GVHD)就是所谓的排异。你应该还记得,之前我给你说过的,传统的输血疗法先是救命疗法,后是送命疗法,到最后越输
越差,血细胞会低于输注前,要是再加上输注丙种球蛋白,更是雪上加霜,原因就是排异,个中道理,本人在八十年代初亲受欧洲血液中心主任教诲时就已明白。
造血干细胞的成功植入是HSCT发挥治疗作用的前提。在造血干细胞移植患者中, 多数经过了多次化疗,骨髓的微环境会受到损伤并因此降低它的造血支持作用。移植前预处理应用大剂量化/放疗致骨髓基质损伤更严重、HLA不匹配移植、因供者差异输注造血干细胞数量不足及GVHD发生均会导致造血干细胞植入失败或植入延迟,从而使移植相关死亡率增加。
三、对策:
骨髓造血微环境的完整对于HSCT后造血重建至关重要。近来已有部分间充质干细胞联合造血干细胞共移植和间充质干细胞输注治疗严重移植物抗宿主病的临床报道。体外培养研究证明, 骨髓MSC具有强大的扩增能力, 能在体外大量扩增具有自我更新的能力;间充质干细胞具有强大的造血支持和免疫调节作用。
目前的初步临床结果显示HSCT、间充质干细胞共移植安全可行,能促进造血干细胞的植入和减低移植后移植物抗宿主病的发生,提高移植效果,降低近期死亡率。另外,间充质干细胞分布广泛、易于获取,缺乏免疫原性,这就使间充质干细胞广泛应用于临床造血干细胞移植成为可能。
当然,抗排异治疗不可或缺。
希望能帮到你。
造血干细胞移植治疗白血病效果到底如何
白血病曾经是被人们认为是绝症的一种疾病,过几代人的努力白血病已经不再是不可治愈的疾病,目前造血干细胞移植已经成为治疗白血病非常的手段。那么什么是造血干细胞移植呢?下面给大家简单介绍一下造血干细胞移植的一些基本知识: 问题一:什么是造血干细胞移植? 造血干细胞移植就是用健康或者是相对健康的造血干细胞取代患者的病态造血和免疫功能。 问题二:造血干细胞移植可以分为哪几类呢? 造血干细胞移植可以分为三类: 第一类是同基因移植,也就是说接受移植病人的基因和提供干细胞的供者的基因是完全相同的,例如,同卵双包胎之间进行的移植。 第二类是异基因造血干细胞移植,这类移植患者和供者的基因不完全相同,但是人类白细胞分化抗原(HLA)配型是相合的,也就是人们常说的有合适的供者;当然HLA相合的造血干细胞可以来源于同胞、无关供者以及脐带血。近年来, HLA不合异基因造血干细胞移植技术的不断发展和成熟使需要移植的患者几乎人人都有机会进行移植。 第三类是自体造血干细胞移植,该类移植是指将患者相对健康的造血干细胞取出来,待患者接受大剂量的化疗和/或放疗后再回输到患者体内,重新建立正常的造血和免疫功能的过程,例如自体造血干细胞移植治疗淋巴瘤等。 可见,虽然上述将造血干细胞移植分为三类,但是这三类可以归结成两类,即异体造血干细胞移植和自体造血干细胞移植。 问题三:造血干细胞移植的简单过程是什么? 问题四:造血干细胞移植可以治疗那些疾病呢? 造血干细胞移植可以用来治疗多种疾病:如血液系统的急性白血病、慢性白血病、淋巴瘤、骨髓增生异常综合征、再生障碍性贫血、多发性骨髓瘤、巨球蛋白血症等;遗传性疾病,如范可尼贫血、地中海贫血等;自身免疫性疾病,如系统性红斑狼疮、重症肌无力、类风湿性关节炎以及多发性硬化、特发性血小板减少性紫癜等。实体肿瘤:如肺癌、肾癌等。此外,有些疾病的造血干细胞移植正在处于研究阶段,如老年性痴呆等。 当然,具体什么样的病人、在疾病的什么阶段、应该采用何种移植方式?这些问题一定要咨询正规医院的从事造血干细胞移植工作的专科大夫。 问题五:寻找到合适供者的概率是多少? 在同胞之间寻找到HLA相合供者的概率的25%~30%;通过骨髓库寻找到HLA相合供者的概率是1/5-10万;如果寻找单倍体相合的供者,那么几乎需要移植的患者人人都可以找到单倍体相合的供者。 问题六:造血干细胞移植治疗白血病的疗效如何? 异基因造血干细胞移植治疗急性淋巴细胞白血病和急性髓细胞白血病5年的生存率可达到60%左右,但是移植成功率只有不到50%,当然生存率的高低取决于移植中心的规模、大夫的经验、移植前的病情等多种因素。 问题七:异基因干细胞移植常见的并发症有那些? 异基因造血干细胞移植常见的并发症有感染(包括细菌、病毒、真菌等)、移植物抗宿主病(包括急性移植物抗宿主病和慢性移植物抗宿主病)、疾病复发等。 问题八:除了造血干细胞移植,治疗白血病还有什么其他的有效疗法吗? 近几年,我国血液病研究专家经过多年临床实践研究研究出一套治疗白血病行之有效的治疗方法——理血换髓疗法。国医白血病科研组采用独创的活性植物药,其主要有效成分“活性清髓因子”进入体内,聚集于造血组织病患部位,清除致病毒素和异物,致使白血病细胞凋亡;与内源性GYA因子特异性结合,拮抗其致病力,抑制对骨髓环境的破坏;与外源性GYB因子非特异性结合,抑制白血病细胞的转移及对内脏器官的进一步侵害。通过“净化”、“排毒”、“补益”、“调理”,使造血微环境得到改善。 通过上述作用,“活性清髓因子”对病变组织器官(骨髓、肝、脾、肾、淋巴结等)进行多层次、多靶点的特异性整治,彻底清除、净化各组织器官造血微环境,改善造血“土壤”,抑制白血病细胞的分裂、繁殖、转移、浸润,使各造血组织器官尤其是主要造血器官——骨髓得到“净化”、“洗礼”,其造血功能得以恢复,达到“理血换髓”之功效。这时,患者外周血象杆状核开始回升,乏力、低热、口腔溃疡等逐步好转,骨痛渐渐缓解。 白血病患者张保军康复出院慢性粒细胞白血病患者在我院续写生命传奇慢性粒细胞白血病急变快速获得完全缓解慢性粒细胞白血病患者刘江辉康复回访
造血干细胞移植后血象变化图的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于造血干细胞移植后血象变化图表、造血干细胞移植后血象变化图的信息别忘了在本站进行查找喔。
标签: 造血干细胞移植后血象变化图
相关文章
发表评论