首页 干细胞移植文章正文

小鼠肠道菌群移植方法(小鼠肠道菌群移植方法视频)

干细胞移植 2023年03月28日 02:40 im

本文的目的是更深入地讨论小鼠肠道菌群移植方法和小鼠肠道菌群移植方法视频,以帮助你了解它们之间的关系。

【派森诺项目文章】多组学整合,Microbiome发表重磅肠—脑轴研究!

近期, 派森诺 与 上海交通大学附属瑞金医院 合作,在 《Microbiome》 ( 影响因子: 11.607 )发表论文,结合生理实验、高通量测序、代谢组检测与粪菌移植等实验,研究了骨钙蛋白对帕金森病的神经保护作用,及其作用机制,可喜可贺!

肠-脑轴研究背景

帕金森病(PD)是一种神经退行性疾病,不能完全治愈。近年的研究显示PD患者与健康人的肠道微生物群落具有差异。肠道微生物的主要代谢产物是短链脂肪酸(SCFAs),能将肠道菌群的信号传递给宿主,且对调节脑功能和血液组织屏障的完整性有积极的作用,但同时也是PD模型中,加速神经炎症和α-触核蛋白病的主要调节因子。因此,深入研究肠道微生物,对治疗或改善PD具有重要意义。

骨钙蛋白(OCN)是一种成骨细胞分泌蛋白,它对脑功能有调节作用,可穿透血脑屏障,与海马CA3区神经元直接结合,恢复小鼠认知功能。已有研究表明,OCN可能会影响菌群组成,因此,本研究假设OCN可以通过调节PD小鼠的肠道微生物组来预防运动损伤和多巴胺能神经元丢失,并针对OCN、肠道菌群对PD的治疗作用与机理进行了研究。

肠-脑轴研究方法

测序平台:Illumina高通量测序平台

测序区域:微生物组细菌16S rRNA基因V3-V4区

肠-脑轴研究结果

1. OCN对PD小鼠的神经保护作用,及其与肠道菌群的关联

动物实验结果显示,OCN可预防6-羟基多巴胺(6-OHDA)诱导的帕金森病小鼠的运动损伤和多巴胺能神经元损失。服用OCN前4周使用抗生素消除肠道菌群后,OCN对小鼠运动功能的改善和多巴胺神经元损伤的保护作用不再有效,这表明OCN对PD小鼠的神经保护作用是由肠道菌群介导。粪便菌群移植实验也得出了相同的结论。

图1 OCN给药可预防6-OHDA诱导的帕金森病小鼠的运动损伤和多巴胺能神经元损失

图2 抗生素预处理使OCN处理未能成功预防帕金森病小鼠的运动损伤和多巴胺能神经元损失

图3 粪便菌群移植实验及运动障碍测试

2. PD小鼠与OCN治疗PD小鼠的肠道微生物群落变化

微生物组测序结果显示,PD小鼠肠道微生物组成与对照组有显著差异(P0.05),而OCN处理后,PD小鼠的微生物群落结构恢复到对照组的水平。从门水平上的微生物类群来看,PD小鼠与对照组也有显著差异。与对照组相比,PD小鼠的 Bacteroidetes 、S24-7、 Rikenellaceae、Erysipelotrichaceae 相对丰度显著降低,而 Firmicutes、Lachnospiraceae 、unclassified  Clostridiales 则显著升高。有趣的是,OCN给药后,PD小鼠的这种微生物类群变化得到了显著改善。

PICRUSt功能预测分析发现,PD小鼠肠道微生物的产丙酸能力有明显降低,与此同时,与丁酸盐生产相关的KO的相对丰度也发生了变化。值得注意的是,OCN给药成功地逆转了PD小鼠的这些变化。这表明,OCN的干预可以改变PD小鼠的微生物群落组成,还可能增强细菌产生丙酸的潜能。

图4 OCN给药对6-OHDA诱导的PD小鼠肠道微生物群落失调的调节作用

3. OCN对PD小鼠粪便丙酸水平的影响

为进一步研究细菌SCFAs是否发生改变,作者用气相色谱/质谱(GC/MS)分析了粪便中SCFAs的含量。结果显示,6-OHDA诱导的PD小鼠粪便丙酸含量显著低于对照组,而OCN治疗显著逆转了这一变化。相关性分析结果显示,粪便中丙酸水平与S24-7、 Rikenellaceae 呈正相关,而与 Lachnosipraceae 、unclassified  Clostridiales 呈负相关。

更重要的是,粪便中丙酸水平与旷场试验、圆柱体试验和转杆试验的运动功能参数呈正相关。因此,肠道微生物对OCN神经保护作用的介导,可能与丙酸有关。

图5 OCN给药可增加6-OHDA诱导的PD小鼠的粪便丙酸水平

4. 丙酸和FFAR3激动剂预防PD小鼠运动损伤和多巴胺能神经元丢失

为进一步验证丙酸与PD小鼠运动功能改善的关系,作者在6-OHDA诱导的PD小鼠饮水中加入丙酸钠。结果表明,口服丙酸能有效改善旷场试验、圆筒试验中小鼠的运动功能,并阻止PD小鼠大脑注射6-OHDA侧近40%的多巴胺能神经元丢失。这表明,丙酸可能是肠道微生物群落衍生的信号,与帕金森病的发展有关,并且可能是OCN改善帕金森病的靶点。

随后,进一步对PD小鼠进行FFAR3(介导丙酸保护作用的主要受体类型)激动剂灌胃处理,得到了与丙酸类似的神经保护作用。

图6口服丙酸预防6-OHDA诱导的PD小鼠的运动障碍和多巴胺能神经元丢失

图7在6-OHDA诱导的PD小鼠中,给药FFAR3激动剂防止运动障碍和多巴胺能神经元丢失

5. 肠神经系统与丙酸对PD小鼠神经保护作用的关联

测量FFAR3在不同组织中的表达后发现,FFAR3在空肠、回肠和结肠中的相对表达远高于在皮质、海马和大脑纹状体等神经器官中的相对表达。顺铂(一种已知的肠道神经毒素)灌胃实验显示,在肠道细胞耗尽的小鼠中,丙酸对多巴胺能神经元丢失的保护作用不再显著。这表明,丙酸对PD的神经保护作用可能与肠神经系统有关,即丙酸可能作为针对肠神经系统的FFAR3激动剂,对PD小鼠发挥神经保护作用。

图8肠神经系统介导了丙酸对6-OHDA诱导的PD小鼠的神经保护作用。

综上所述,OCN可通过改变肠道微生物群落,促进微生物来源的丙酸的产生,而丙酸可以激活肠神经元中的FFAR3,从而发挥其对帕金森病的保护作用。

肠-脑轴研究结论

本研究通过多组学整合关联研究的策略,结合粪菌移植等实验,对OCN、肠道菌群对PD的治疗作用与机理进行了研究,并得出以下结论:

①OCN可显著改善PD小鼠运动功能障碍和多巴胺能神经元丢失;

②OCN处理可恢复PD小鼠的肠道菌群失调,使拟杆菌门丰度增加,厚壁菌门丰度减少,并增加丙酸盐产生菌及粪便丙酸盐水平;

③抗生素处理实验与粪菌移植实验表明肠道菌群介导了OCN的神经保护作用;

④口服丙酸盐2个月可通过肠神经元依赖性的方式,恢复PD小鼠的运动功能及多巴胺能神经元;

⑤FFAR3(丙酸盐受体)激动剂有类似的神经保护作用。

肠-脑轴研究的测序和部分数据分析工作由上海派森诺生物科技有限公司完成。

如何处理小鼠肠道提取肠道微生物

一种提取小鼠肠道中活体微生物的方法

肠道微生态系统是哺乳动物健康与疾病的重要基础,在生理、病理、预防、治疗中都具有重要的地位和作用[1]。对于哺乳动物,肠道微生物的营养作用非常重要,如合成维生素、消化碳水化合物、氨的利用、脂的利用以及合成酶类[2]。在食物相对缺乏时,肠道多形类杆菌对糖苷水解酶的分泌会增多,提高肠道微生物群系利用食物的能力[3]。可见,肠道微生态系统能根据食物的特点做出改变,以其功能的多样性和较大的适应性来应对外界环境的变化。人体肠道微生物群基因的多态性还为宿主提供了许多人体自身所不具备的酶与生化途径,从而使得人体不易消化的食物残渣及上皮细胞分泌的内生粘液被发酵利用[4]。为探寻肠道微生物在机体的营养与健康以及疾病与治疗机制中的作用,越来越多的科研工作者开始关注对肠道微生物的研究[5,6]。悉生生物学、厌氧培养技术、电镜技术、细胞分子生物学、基因组学、代谢组学及蛋白质组学等现代科学技术的发展对肠道微生态的研究起到了积极的推动作用[7,8]。在Biolog等研究方法中,需先将肠道中的微生物提取出来,所得到的菌悬液,既保证活体微生物的种类和数量,又去除可能会干扰研究结果的杂质

陈根:研究证实——为什么不要风度,宁要温度?

人常言,温度风度不可兼得。事实上,温度与风度之争也是每年冬天必然面临的两难,像对抗秋裤那样在我们的日常生活中上演。要风度还是要温度,最终变成了代价的两难选择,风度诚可贵,但最终,还是温度价更高,因为其背后直面的是—— 健康 。

大量的研究已经证实了风度背后的 健康 代价,近日,瑞士日内瓦大学(UNIGE)的研究团队则再次提供了选择温度的强有力证据。 这是一项关于骨质疏松的研究,研究发现,骨骼暴露在更温暖的外界环境时,其强度会增加,骨密度增加,更不容易患骨质疏松 。其研究已发表于《细胞·代谢》。

骨质疏松症是最普遍的代谢性骨病,其特征在于骨量低和微结构恶化。约1/3的女性会在绝经后会患上骨质疏松,因这也让骨质疏松成为一个重大的公共 健康 问题。

研究认为,这种现象产生的原因,与高温能引发肠道菌群的组分变化有关。 如果将生活在温暖环境中的小鼠肠道菌群,移植给患有骨质疏松的小鼠时,它们的骨骼会变得更加强壮且紧密。

基于此,通过将一些成年小鼠置于温暖的环境中,科学家发现它们的骨骼大小并没有变化,但骨骼强度和密度得到了显著的改善。随后,他们用切除卵巢的、具有骨质疏松的模型小鼠重复了实验。研究结果显示,简单地提高生活环境的温度后,小鼠的骨质疏松就减轻了。

在进一步对人类的研究中,研究团队分析了一组流行病学数据,关于全球的骨质疏松发病率与人们居住环境的平均气温、纬度、钙摄入量以及维生素D水平的联系。 他们发现,不管有没有其他因素,气温越高,髋部骨折的发生率越低——这是骨质疏松的一个主要后果 。

到这里,为什么不要风度,宁要温度也已经有了答案,风度诚可贵,温度价更高,这是因为,其背后的代价为—— 健康 。

减肥难?别急,精准调控细菌的方法已横空出世!

关于肠道菌群,热心肠先生介绍过很多,在《79个超强微生物知识,全力助你孕育99分超优宝宝》一文中,有第19-32这14个知识值得大家了解。

肠道菌群与我们同呼吸共命运,它们不单单只是寄居在我们体内白吃白住,更重要的是,它们也在为我们的健康做出贡献。比如,各类人体无法直接消化吸收的植物纤维素和多糖,可以在肠道菌群的帮助下,转化成对人体有益的短链脂肪酸和维生素。

而这只是肠道菌群众多能力中的一个例子。

多年来的研究表明,肠道菌群在我们的生长(如营养不良),发育(如免疫系统发育成熟),代谢疾病(如肥胖),传染病(如抵抗细菌感染)等各个方面也都起着重要作用。

很多人会很自然地想到,我们可以考虑调节肠道菌群的结构,以实现改善人的健康状态。其实,很多科学家已经在行动,而且有了激动人心的进展。

今天,吴萌博士和热心肠先生就给大家讲讲三个关于肠道菌群和肥胖的故事,看完以后你会感觉通过调控细菌来减肥,可能是很靠谱的事。

菌群有别,胖瘦不一

2013年,吴萌博士所在的美国圣路易斯华盛顿大学Gordon实验室的科学家,在《科学》杂志发表了震惊世界的研究成果:

详细介绍请看热心肠先生之前的文章:《胖瘦“菌注定”?减肥,可以找个瘦子同居?》

简单的说:就是把胖瘦不一样的双胞胎姐妹的肠道菌群(从便便里提取出来)转移到小鼠肠道里(喂给它们吃),然后把它们分开饲养,投喂一样的健康食物,转移了胖姐姐菌群的小鼠(胖菌小鼠)变胖,而转移了瘦妹妹菌群的小鼠(瘦菌小鼠)相对较瘦。

这就充分说明了肠道菌群是能影响胖瘦的,而科学家们后面发现的事更魔性:他们把胖菌小鼠和瘦菌小鼠放在一起饲养,同样投喂一样的健康食物,胖菌小鼠却没有再胖起来!

原来,类似于狗狗,鼠鼠也是爱吃便便的动物!关在一个笼子里,胖菌小鼠会吃到瘦菌小鼠的便便,肠道菌群就在进餐过程中完成了自然的交换选择。

“天生”有胖细菌的胖菌小鼠,就此被瘦菌小鼠给“传染”了瘦细菌,没有胖起来!而胖细菌却不会“传染”给瘦菌小鼠!

呃(⊙o⊙)…居然有这等好事!

可惜啊,狗和鼠改不了吃屎,也不会改,这是它们的生存之道,但人不行啊,不能吃。。。!所以胖子想讨好瘦子,希望瘦子传染点瘦细菌不现实。

而且,如果给胖菌小鼠吃不健康的高脂高糖食物,它就是跟再多瘦菌小鼠住在一起,吃了再多…(此处省略二字)也不会拥有好的瘦细菌,自然也不会瘦。

所以,要减肥,管住嘴永远是极为关键的事。

但你不要灰心,我们依然还是有很多办法来改变肠道菌群的结构,以达到部分减肥的目的。

AKK细菌,靠谱的减肥益生菌?

有一种靠谱的方法,就是研究哪些细菌有利于肠道健康,能帮助减肥,然后考虑把它们开发成益生菌。

在《猪油毁肠记:吃什么油,伤什么菌,长什么肥肉?》一文中,热心肠先生介绍过2015年一项最新研究:保持其他食物成分一样,只让脂肪种类不一样,食谱中脂肪如果是猪油,老鼠会更胖,肠道里嗜胆菌和拟杆菌比较多:

而食谱中脂肪如果是鱼油,老鼠身材棒棒哒,肠道里AKK菌、乳酸杆菌、双歧杆菌多:

注意一下这个AKK菌,它的英文全称叫:Akkermansia Muciniphila,目前居然还没有中文翻译,所以我们权且就叫它AKK菌。

有没有人会想起AK47?是不是希望有AK47这样犀利的武器帮你减肥?

科学家说,AKK菌用来减肥,确实很靠谱!

AKK菌能增厚肠道黏液层,改善代谢,帮助消耗更多能量,不让人长胖。

特别告诉你一下,有些胖子肠道里AKK菌,比正常人的少100倍。

所以,AKK菌已经成为热门的减肥益生菌,也不知道有没有公司正在做相关的产品,中国的药厂益生菌厂可以试试。

更靠谱的:开发靶向AKK菌的益生元

益生元,简单的说就是益生菌的食物。它能特异性地刺激某一种或几种对健康有益的细菌生长,常见的益生元有:

人们已经比较明确的是,上面这些益生元,很多能有针对性地刺激双歧杆菌的生长。

当然,热心肠先生也偷偷告诉你,它们也基本都能刺激AKK菌的生长,是AKK菌会吃的食物,但刺激AKK菌的效果没有双歧杆菌那么明显。

那能不能找到噼里啪啦三下五除二就是专一能把AKK菌刺激起来的益生元呢?

答案是肯定的!

在2015年10月之前,工作量会很巨大,开发时间也会很漫长,要不断地去试候选益生元;但在吴萌博士和同事在《科学》杂志公布一个强大的益生元开发工具后,事情就变得相对简单了。

我们先看《细胞·代谢》杂志对这个重磅研究的总结图:

看了是不是有点抓狂?热心肠先生看过以后也是很蒙很蒙很蒙很蒙头转向!所以我特别请到吴萌博士来亲自讲解:

我们从肠道菌群自身出发,结合微生物遗传学和基因组学,开发了一种新的肠道菌群研究方法:多类插入序列分析Multi-taxonInsertion Sequencing (INSeq), 利用高通量测序技术,动态检测饮食对于肠道细菌结构的影响,鉴别调节细菌适应多变食物的基因,从而为探寻新的益生菌以及可以促进这些益生菌生长的成分—益生元铺平了道路。

第一步:用“条形码”建立突变库

具体来讲,这个方法的第一步是给细菌装上“条形码”。我们通过微生物遗传学实验手段,对4种人体肠道内常见细菌,解纤维芽胞杆菌,卵圆类杆菌和两个多形拟杆菌亚种,进行了基因突变。

我们把带有条形码的转座子插入到它们的基因组中,造成插入位点的基因功能的丧失,从而产生了一个特异基因缺失的突变株。通过调节实验条件,对每个菌种,我们都制造了相应的突变库,里面包含几百万个异源转座子突变种,涵盖了所有的非必需基因。

在特定的环境下,某些突变株生长速度会变慢,从而导致其在整个肠道菌群中的相对丰度也随之降低。由于条形码的存在,通过基因组测序,我们可以准确的检测出这些突变株的插入位点,确定突变基因,以及获取每个突变株的相对丰度。

通过比较各个突变株在该环境中的前后丰度的变化,我们创建了统计模型,计算出了每个突变株在该环境下的“健康指数”。“健康指数”显著降低的突变株所携带的突变基因就是细菌适应该环境的重要基因。

第二步:建立模拟人类肠道环境的老鼠模型

有了突变库之后,第二步就是建立“人类肠道菌群模拟化”的老鼠模型了。我们把人类肠道细菌(11野生株?四个突变库)移植到在无菌隔离系统中饲养繁育的小鼠体内,使它们仅携带人类肠道细菌,成为从肠道菌群角度来说的“人类化”老鼠。

然后分别给它们喂食不同的人类食物:以高脂肪高糖为代表的典型西方食物和低脂肪高植物纤维素的健康食品。

第三步:动态监测肠道菌群的变化

接下来,利用第二代测序方法,动态监控在不同食物饲养下老鼠体内菌群结构的变化,以及基因表达。

这些的突变库的测序数据让我们首次有机会能够从基因层面研究肠道菌群是如何适应不同环境的。

通过对测序数据的比对,我们可以准确记录每个突变株在放入小鼠体内前后的丰度变化,那些由于转座子插入而导致基因功能缺失,丰度显著下降的突变株便是我们要找的突变株,因为它们的突变基因就是在这一环境中起重要功能的基因。

第四步:找到基因后验证对应的益生元是否有效

最后便是最激动人心的一步,我们能否找到新的方法来调控肠道菌群结构呢?

在上面介绍的2013年的实验中,我们发现了“瘦菌小鼠”传染给“胖菌小鼠”的重要细菌之一是解纤维芽胞杆菌。

在新的研究中,我们发现解纤维芽胞杆菌在低脂高纤维的健康食品中生长的很欢快,几乎是占总菌群的一半,但是在高脂高糖的食品中就一下子降低了一半以上。

我们能否找到一种方法让它们在西方食品中也能欢快的生长呢?

通过Multi-taxon INSeq,我们发现解纤维芽胞杆菌有一个基因簇的突变株们只在西方食品上显示出低于其他的“健康指数”,显示出这个基因簇对解纤维芽孢杆菌在西方食品中的生长起重要作用。

那么我们可不可以用它做靶点呢?

通过体外实验,我们发现最常见的谷物半纤维素阿糖基木聚糖是这个基因簇的底物,于是我们决定在老鼠的食用水中加入半纤维素阿糖基木聚糖,我们发现解纤维芽胞杆菌的相对丰度一下子增长到了比在健康食品中还高的水平,并且具有食物特异性和菌种特异性,完全验证了我们的假设。

怎么样?可能你还是没有看懂!没关系,多看几遍吧。

热心肠先生也是花了一个多月才最终理解这个技术的细节,并为它的应用前景感到非常激动。

为什么呢?请看我和吴萌博士关于这个技术可能用于开发AKK菌的专属益生元的讨论:

明白了么?当你发现一种可以减肥的益生菌,除了可以直接把它做成益生菌,现在更靠谱的是可以尝试找到能让它在肠道里长得更好的益生元!

筛选基因,确定底物,实际验证可能在数周之内就可以完成哦。

如果成功,AKK菌就不需要跟双歧杆菌等分享低聚果糖等益生元了。于是,要减肥,吃点针对AKK菌的益生元,效果可能杠杠的。

总体来说,这个方法的创立, 就像这个研究项目的领军人,美国科学院和医学院双院士Jeffrey Gordon教授所说,为今后肠道菌群功能的研究奠定了基础,显示了我们可以设计益生元来完成对肠道菌群的精准调控。

精准调控,就是传说中的靶向调控哦!

参考文献

Everard A et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71.

Dao MC et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2015 Jun 22. pii: gutjnl-2014-308778.

Wu M et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science. 2015 Oct 2;350(6256):aac5992.

Cani PD, Everard A. Harnessing Genes and Diet to Fine-Tune the Gut Microbial Fitness. Cell Metab. 2015 Nov 3;22(5):754-6.

Caesar R et al. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015 Oct 6;22(4):658-68.

Bindels LB et al. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015 May;12(5):303-10.

本文由热心肠先生和美国圣路易斯华盛顿大学的吴萌博士共同完成。

吴萌博士:清华大学生命学院2002级本科校友,肠道微生物研究领域开创性人物Jeffrey Gordon的得意门生,2015年《科学》杂志重磅论文第一作者。

宏病毒组学 | 粪便病毒组移植减轻模式小鼠2型糖尿病和肥胖症的症状

Gut:粪便病毒组移植(FVT)对2型糖尿病和肥胖小鼠模型的缓解作用

近年来,粪便移植已成为治疗由梭状芽胞杆菌引起的严重腹泻的流行方法。最近,丹麦哥本哈根大学Dennis Nielsen课题组在一项小鼠中进行的试验表明,通过粪便病毒组移植减轻肥胖症和2型糖尿病(Type 2 diabetes mellitus, T2DM)患者的临床症状。

研究目的 :

肥胖症和2型糖尿病(T2DM)的发生发展与肠道微生物群(gut microbiota, GM)的改变有关。噬菌体(phages)是一种以宿主特异性方式攻击细菌的病毒,其拮抗作用有可能改变肠道菌群,作为概念验证,Dennis课题组通过较瘦供体粪便病毒组移植(Fecal virome transplantation,FVT)将 转变 肥胖小鼠转变为较瘦小鼠表型,证明FVT对2型糖尿病和肥胖症干预的有效性。

实验设计 :

图1:实验设计流程图。40只5周龄的雄性C57BL/6NTac小鼠分为低脂(Low Fat, LF)饮食、高脂(High Fat, HF)饮食、HF +氨苄青霉素(ampicillin, Amp)、HF+Amp+FVT和HF+FVT 5组:(图1)。在13周内,小鼠被随意喂食HF饲料(研究饲料D12492,美国)和LF饲料(研究饲料D12450J,美国)。在不同方案喂食6周后,HF+FVT和HF+Amp+FVT组的小鼠分别用0.15 mL肠溶酶间隔1周(第6、7周)灌胃进行两次FVT,。第一次接种FVT前一天,HF+Amp和HF+Amp+FVT小鼠在饮用水中给予单剂量Amp(1 g/L)。从18只C57BL/6N小鼠的盲肠含量中提取并混合用于FVT的病毒体,这些小鼠代表3个不同的供体,饲喂LF饲料14周。来自不同供应商的个体小鼠代表了独特和多样的病毒概况。应用的FVT 病毒组的滴度约为2×1010病毒样颗粒/mL。在研究的第20周,对小鼠进行口服葡萄糖耐量试验(OGTT),并监测食物摄入量和小鼠体重。

项目流程 :

结果:

1.  瘦供体FVT降低了DIO小鼠的体重增速,使血糖耐量恢复正常

小鼠分别在FVT前1-2周和FVT后间隔1-2周称量体重。在第一次FVT 后,第4和第6周(15、17周龄)时,HF+FVT小鼠(p0.017)和HF+Amp小鼠(p0.006)的体重增加明显低于HF小鼠(图2)。LF和HF+FVT小鼠OGTT无显著差异(p0.842),而HF小鼠OGTT水平显著升高与LF组和HF+FVT组比较(p0.0001),显示FVT已使HF+FVT小鼠的血糖耐量正常化(图2B)。此外,HF+Amp+FVT的OGTT与HF小鼠相当(p0.999),说明在HF+Amp+FVT小鼠中,Amp对细菌组成的初始破坏有可能抵消了FVT的作用, 。 这同时表明,与FVT相关的影响是通过肠道菌群成分的改变而发生的。除糖化血红蛋白(HbA1c)水平和每只小鼠的食物消耗量外,还定期测定非禁食血糖。

图2. (A)第一次FVT后2、4、6周(分别为13、15、17周)体重增加的条形图。首次FVT后6周(17周龄)测定OGTT水平。数值是基于tAUC相对于单个小鼠的血糖水平。图中排除了第一次FVT后第4周和第6周两两比较的显著差异,以增加图像的可视性。*P0.05,**P0.006, ***P0.0005, ****P 0.0001。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著; OGTT, 口服葡萄糖耐量试验; tAUC, 曲线下总面积。

2.  FVT 增强了全身能量稳态相关基因的表达

以肝脏和回肠组织中与肥胖和T2D相关的基因为目标,检测HF+FVT与HF小鼠中相关基因的表达是否有显著差异,并与LF小鼠具有相似性。结果显示,FVT降低了HF饮食引起的基因表达差异,从而形成与健康LF小鼠相似的表达水平。

图3:肝脏和回肠组织中与肥胖和T2D相关的基因表达水平(18周龄)。(A) Ffar2Ileum ,(B) LeprLiver ,(C) KlbLiver ,(D) Ppargc1aLiver ,(E) Igfbp2Liver ,(F) Socs3Liver ,(G) MycLiver 。采用以HF或LF为对照组的线性模型计算组间显著性。样本质检表达量的差异倍数取log2是对相对基因表达的一种度量,它是基于log2转化的表达值归一化到最小值的样本。 Ffar2Ileum ,游离脂肪酸受体; LeprLiver ,胰岛素样生长因子结合蛋白; KlbLiver ,β-klotho; Ppargc1aLiver ,瘦素细胞因子受体; Igfbp2Liver ,过氧化物酶体增殖物激活受体γ共激活剂1-α; Socs3Liver ,细胞因子信号传导抑制因子; MycLiver 转录因子。FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著;

3.  FVT 介导肠道菌群转移

盲肠样本16S rRNA基因拷贝数/g在1.46×1010 ~2.70×1010之间变化。LF小鼠的细菌Shannon多样性指数明显高于HF小鼠(p0.005),但与HF+FVT小鼠相似(p=0.816)。与HF小鼠相比,盲肠中HF+FVT的Shannon多样性指数也显著增加(p0.05),但在结肠中Shannon多样性指数没有明显增加。Amp治疗后7周,Amp处理过的HF+Amp小鼠的Shannon多样性指数最低(p0.002),而FVT提高了Amp干预后的HF+Amp+FVT小鼠的Shannon多样性指数(p0.016)(图4A)。FVT对病毒Shannon多样性指数无影响(p0.59),而Amp的处理显著(p0.003)增加了病毒Shannon多样性指数(图4B和线上补充表S5),其原因可能是由于噬菌体的诱导。

根据Bray-   Curtis差异测定法,FVT对细菌组成(图5A, p0.003)和病毒组成(图5B,P0.001)都有强烈的影响,如HF+FVT与HF小鼠、HF+Amp+FVT与HF+Amp小鼠的明显分离。

FVT受体的GM特征与供体的GM特征不完全相似,这表明供体病毒组只有部分在接种6周后建立。此外,所有实验组在病毒和细菌群落中两两显著分离(p0.003),包括LF和HF+FVT (p0.001)。该研究发现,无论是否经过Amp处理,FVT都强烈地影响和部分重塑了GM的组成。rCCA表明,某些细菌(拟杆菌目和梭菌目)和病毒(尾病毒目,微病毒科和未鉴定的病毒)之间存在强(r0.75)正或负相关性的潜在宿主-噬菌体对关系。

图4.供体和盲肠(A)细菌和(B)终止时(18周龄)的Shannon多样性指数。括号表示图中每一组的样本数量,灰色点表示异常值。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表S5。*P0.05。Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。ns,不显著。

图5:PCoA图,基于Bray-Curtis不同度测量,取供体和盲肠(A)细菌群落和(B)18周龄病毒群落。Bray- Curtis不同度量的相似度分析(ANOSIM)显示在表中。供体是从三个不同供体的盲肠内容物中提取的细菌或菌体的1:1:1混合而成。各组的两两比较见线上补充表S5.Amp,氨苄青霉素;FVT,粪便病毒组移植;HF,高脂;LF,低脂。

图6.说明所有五个实验组细菌(A)和病毒(B)概况的热图,以及某些细菌和病毒簇之间的强烈相关性(C)。

4.  FVT 介导的血浆代谢组谱的改变

采用非靶向UPLC- MS分析血浆样品,测定FVT对宿主代谢组的影响。基于数据集建立了PCA模型,比较LF、HF和HF+FVT的概况(图7,所有组的在线上补充图S111)。与其他测量方法一致,HF+FVT小鼠的血浆谱位于HF和LF小鼠之间。两两建立OPLS-DA模型,所有模型(LF vs HF、LF vs HF+FVT、HF vs HF+FVT)均具有统计学意义(p0.025),支持三组分离。在筛选出的VIP评分为2的特征中,仅对与相关基因表达相关(基于rCCA)和细菌或病毒丰度相关的特征进行进一步检测以进行注释。研究的特征主要包括饱和/不饱和溶血磷脂(LysoPC)和/或磷脂磷脂胆碱(PCs), 而 其余的特征包括各种氨基酸或无法识别的代谢物。总体而言,与LF小鼠相比,HF小鼠的LysoPC(18:2)、LysoPC(22:2)、PC(16:0/22:6)水平更高,血浆LysoPC(22:4)和PC (18:1/O-18:2)水平更低。与LF小鼠相比,HF+FVT小鼠循环LysoPC(16:0)、LysoPC(18:2)和PC(16:0/22:6)水平升高,而LysoPC(22:4)和PC (18:1/O-18:2)水平降低。与HF小鼠相比,HF+FVT小鼠的LysoPC(16:0)、LysoPC(18:0)和PC (18:1/O-18:2)水平更高。

图7.PCA分析图,原始数据各维度和每个主成分的相关度由电喷雾电离(ESIZ)+UPLC-MS处理的终止妊娠(18周龄)时LF、HF和HF+FVT(R2=0.40和Q2=0.11)得到,表包括由两两比较生成的监督的OPLS-DA模型。HF,高脂;LF,低脂;OPLS- DA,潜结构正交投影判别分析;PCA,主成分分析;UPLC- MS,超高效液相色谱-质谱分析。

结论 :

①   对高脂喂养的小鼠进行粪便病毒组移植(FVT),移植来源为低脂喂养14周的瘦小鼠的盲肠病毒组;② FVT 后第 6 周,受体小鼠的体重增长显著降低,且 葡萄糖耐受性 OGTT与 瘦 低脂喂养的对照组小鼠相似,没有出现 发生 因高脂喂养诱发 引起 的糖耐受损;③与此一致的是,FVT 显著改变了小鼠的肠道细菌和病毒组成、血浆代谢物以及与肥胖和 2 型糖尿病相关基因的表达水平;④ 但在 FVT 前进行抗生素预处理,反而会削弱 FVT 的有益效果。这项研究说明,噬菌体介导的疗法或能用来治疗肥胖和糖尿病等肠道菌群相关疾病。  

关于小鼠肠道菌群移植方法和小鼠肠道菌群移植方法视频的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签: 小鼠肠道菌群移植方法

发表评论

干细胞治疗Copyright Your WebSite.Some Rights Reserved. 备案号:粤ICP备2022073049号