神经干细胞移植最新突破(神经干细胞移植最新突破进展)
本文目录一览:
- 1、获取神经干细胞有哪几个途径?
- 2、干细胞移植术应用于显微外科临床的细胞由什么组成最新进展?谢谢!
- 3、全球医疗的人体免疫细胞的分类及其功能下一个重大突破口:干细胞技术
获取神经干细胞有哪几个途径?
而获取神经干细胞只有三个途径,一种是通过胚胎提取,也就是从流产的胎儿身上抽取获得干雀败好细胞;二是通过克隆,通过抽取动物的细胞注入卵母细胞,培植成干细胞;三则是从自身抽取骨髓,然后加入各种诱导因子,在进行一些基因的改造和修饰,定向诱导分化成神经干细胞。而前两种获取方式会带来伦理道德方面的置疑,而且从技术层面上来说难度也太大。所以从骨髓中进行神经干细胞的培养,不仅技术方面相对比较成熟,实验的效果和可靠性也比前两种要更明显。
后来应脑瘫、脑外伤和脑血管瘤三位志愿者患者的家属强烈要求,研究人员对他们进行了神经干细胞移植手术,疗效目前还正处于观察之顷铅中。如果一切顺利的话,不久之后就可以在临床中普通的推广应用了。
神经干细胞移植是国际上的一种研究方向,很多研究神经干细胞移植领域的专家、学者,对“神经干细胞移植”目前的研究的状况以及发展前景都抱有很大的期望,都希望在短时间内能有更大的突破。而对于发病率居高不下的偏瘫患者来说,如果神经干细胞移植获枯如得突破并用于临床,实则算得上一项造福人类的研究成果。
干细胞移植术应用于显微外科临床的最新进展?谢谢!
我苹果干细胞美容早上用行吗的理解 人类对人类的干细胞是同源;神经细胞获得的干细胞应用于神经系统是同源。
请参考:
干细胞因与脊髓损伤区域的细胞同源而具有独特的治疗优势
干细胞因与脊髓损伤区域的细胞同源而具有独特的治疗优势。
脊髓损伤是一种严重危害人类健康的疾病,损伤患者在损伤平面以下存在感觉、运动、反射及尿便功能障碍,目前脊髓损伤治疗研究主要集中在以下方面:①控制继发性损伤的进展,包括手术减压、激素冲击疗法、亚低温治疗、钙通道阻断、兴奋性氨基酸拮抗、自由基清除等。②促进轴突再生、修复受损的髓鞘,加强中枢神经的可塑性并促进未损伤区域的代偿功能,包括细胞移植、神经生长因子的应用。③解除或中和脊髓损伤后抑制轴突再生的各种因素,包括败腊御应用抗轴突生长抑制因子、应用基因沉默等技术等方法间接促进轴突的再生。移植载体方面的研究主要集中在胚胎脊髓组织、神经干细胞、外周神经、许旺细胞以及基因修饰的功能细胞等。已有文献证实,上述载体的移植均有助于神经系统的恢复,干细胞因与脊髓损伤区域的细胞同源而具有独特的治疗优势。
脊髓损伤后,血-脊髓屏障被破坏,局部缺血、缺氧,多种炎性因子进入损伤区域,触发细胞坏死和凋亡等级联效应。在损伤残存的神经细胞的同时,还会造成脊髓创伤区边缘脊髓组织的损伤,因此预防继发损伤是早期治疗的重要内容。从病理生理机制角度分析,脊髓损伤后出现的局部微环境改变也是造成神经系统再生失败的重要原因。脊髓损伤后局部微环境的变化包括:①损伤造成神经细胞死亡,脊髓屏障破坏造成脊髓内环境失衡。②细胞毒性物质造成缺血再灌注损伤。③损伤后多种抑制性因子表达于细胞表面。④反应性胶质细胞大量增殖,所形成的胶质瘢痕及再生抑制分子阻止了轴突再生和跨越损伤区。
干细胞具备以下特点:①自我维持和更新的能力。②增殖分裂能力。③自我更新能力。④多向分化潜能,可分化为神经元细胞、星形胶质细胞、少突胶质细胞。⑤有一定迁移能力,能到达损伤或疾病部位并产生新细胞。干细胞可通过两种方式生长:一是对称性分裂,形成两个相同的神经干细胞或两个祖细胞;二是不对称性分裂,由于细胞质中调节分化蛋白不均匀性分配,使得一个子细胞成为祖细胞,并在外界因子刺激下不可逆地向多个细胞系终末期分化,另一个子细胞则保留神经干细胞亲代的特征,分化细胞的数目受分化前神经干细胞数目和分裂次数的控制局余。
目前,干细胞的来源主要有:①由胚胎干细胞诱导分化而来。②由胚胎或成年哺乳动物中枢神经系统分离而来。③源于肿瘤组织或转基因永生化的神经干细胞。神经干细胞已经从胚胎、胎儿和成人脑组织的不同部位(包括海马、脑室/室管膜区域以及皮质和杏仁核中)分离出来,这些细胞可能对于中枢神经系统的病变是一个替代治疗方案。有实验表明成人的脑组织包含着新的神经干细胞源,并且可以通过外科手术获得。从成人脑组织中分离的这些细胞可以使自体移植成为可能,这样可以避免伦理学上的冲突。目前成人神经干细胞的培养技术已成为常规。在对神经干细胞长达两年的培养过程中,它们分化为3种基本的神经细胞(神经元、星形细胞和少突胶质神经细胞),而且能够发育为成熟的神经细胞。有报导来源于人胚胎前脑的干细胞可以体外扩增到一百万倍以上,这样对于细胞移植可以提供一个几乎无止境的神经干细胞源。
干细胞分离和培养成功,尤其是采用编码致癌蛋白的外源性遗传信息使神经干细胞永生化,解决了移植物数量不足的问题,也避免了伦理学方面的问题。干细胞移植后可定向、定位分化为功能细胞,替代补充缺失细胞的结构和功能,释放神经递质、产生神经营养因子等,促进病损神经组织再生和抑制神经变性。成体脊髓组织损伤后内源性神经干细胞生成和分化不足,自身修复能力有限,主要原因为脊髓内存在抑制分裂、迁移等营养信号的因子存在,内源性和外源性神经干细胞移入可改变这种平衡,促进内源性神经干细胞的生成和分化。
干细胞移植疗效取决于与宿主神经系统在结构和功能上的整合性,现临床开展的干细胞移植已经应用于帕金森病、脱髓鞘病变和脑、脊髓损伤的治疗。Gao等研究发现察岩在受损伤的发育期脑内,移植的干细胞向损伤部位移行并替代缺失的细胞,这表明干细胞具有潜在的迁移能力,为治疗脊髓损伤后引起的广泛神经元受损提供了理论依据,借助它们的迁移能力,可以避免多点移植带来的副损伤。Lepore等将从大鼠脊髓组织分离的脊髓干细胞植入脊髓损伤模型中,通过双重免疫染色证实移植的神经干细胞向神经元分化,并且电镜观察发现新生神经元与宿主神经元间有新建立的突触。
运动学检测表明,移植组大鼠前肢运动功能得到了明显的改善,但与正常动物仍有较大差距。该实验表明神经干细胞移植到中枢神经系统的非神经元生发区也可以分化为神经元,这可能是由于移植的时间较晚,此时损伤区的炎症反应已经很轻微,局部的抑制因子和毒性因子也减少,移植的干细胞可以更好地存活及分裂。
Mitsui等证明,小鼠脊髓损伤后移植BrdU标记的神经干细胞,术后通过免疫组化在受损的脊髓处检测到神经干细胞,同对照组相比,术后28 d排尿量显著增加,排尿压显著减少,残余尿量显著减少,排尿效率有明显改善。这表明脊髓损伤后移植神经干细胞可以明显改善膀胱功能。Yasushi Fujiwara等以重物打击造成大鼠胸髓损伤,损伤处显微注射移植神经干细胞,移植细胞存活并分化为神经元、星形胶质细胞和少突胶质细胞,同时轴突延长8 mm,大鼠后肢功能有所恢复。
就目前的资料看,干细胞是比较理想的移植材料。移植干细胞治疗脊髓损伤后的机制有:①干细胞分化后产生的神经元和胶质细胞可以分泌多种神经营养因子,改善脊髓局部微环境并启动再生相关基因的顺序表达,使损伤轴突开始再生,它们同时产生多种细胞外基质,填充脊髓损伤后遗留的空腔,为再生的轴突提供支持物。②补充外伤后缺失的神经元和胶质细胞。③使残存脱髓鞘的神经纤维和新生的神经纤维形成新的髓鞘,保持神经纤维功能的完整性。基因治疗是目前在脊髓损伤修复方面研究最多的,是指利用基因手段在脊髓损伤局部特异性,长期和安全的产生神经营养因子和促进轴突再生物质的一种方法。
体外基因转染是获得宿主活体细胞进行培养,然后在体外进行转染,再对基因转染的细胞进行筛选、分析,将细胞扩增,达到一定数量后被移植进入神经损伤区域以促进神经再生,这种方法所获得的细胞有不存在免疫排斥的优点。
随着对神经生物学和再生医学研究的不断深入,干细胞移植治疗SCI已表现出广阔的应用前景,MSCs诱导分化为神经干细胞是目前最具挑战性的研究课题。
虽然基础研究和动物实验已取得可喜的进展,但仍存在一些问题尚待解决: (1)脊髓损伤的程度、病程与干细胞治疗的效果尚无明确的相关标准。(2)MSCs分化的神经干细胞是否可以替代损伤的脊髓神经细胞尚存在争议,是结构的替代,还是功能的替代还未得到明确的答案。(3)干细胞对SCI后神经功能改善的机制尚不明确。随着对干细胞研究的不断深入,干细胞移植将成为治疗SCI的有效手段。
全球医疗的下一个重大突破口:干细胞技术
干细胞 是具有自我复制、更新和多向分化潜能的原始细胞,其生物学特性与生命的发生、发育、分化、成熟、衰老、死亡等生理和病理过程息息相关,是当今生物医学研究最热门的领域之一。干细胞的存在可确保许多器官可以不断地进行自我更新,当某一组织器官受到损伤或功能丧失时,即可通过激活器官内的干细胞而生成新细胞促使器官组织再生,在无法完成自我再生的时候,也可以通过外源输入相应的干细胞达到治疗效果。
现今全世界的科研学者都在探讨如何利用干细胞治疗来攻克诸如脊髓损伤、帕金森病、黄斑变性、糖尿病、癌症、尿毒症、血液系统疾病等困扰医学界的难题。干细胞研究的巨大应用前景已经得到了世界各国的支持,众多国家大力发展干细胞领域技术以占领领域制高点。
再生医学 成为国际生物学和医学界关注的焦点。随着该领域竞争日趋激烈,全球干细胞市场规模逐渐扩大,干细胞技术逐步成为衡量生命医学发展水平的重要测度指标。
目前的临床应用
2011年中科院启动了“干细胞与再生医学研究” 战略性先导科技专项。干细胞专项从重大理论突破、关键核心技术及干细胞临床应用3个亩做方面出发,集中攻克干细胞调控、干细胞治疗核心机制、干细胞应用体系等重大科学问题和核心关键技术,纵向连接干细胞基础理论研究和临床转化应用,为干细胞和再生医学的研究与发展起到引领及示范作用。直至目前以及取得了很多阶段性的成果,比如对于一些器官损伤的修复、骨髓损伤的修复、神经组织的修复和一些癌症的治疗,甚至是在对艾滋病,肺纤维化,重症肝病等“绝症”的治疗领域有了突破性的进展。
目前细胞技术在临床医学上的应用领域大致有五个:细胞替代治疗、系统重建、组织工程、基因治疗以及美容抗衰老。
细胞替代治疗
近年来,基于干细胞的细胞替代治疗在治疗疾病上的应用取得一定进展。在临床和科研中,科学家已先后成功利用胚胎 间干细胞、充质干细胞、神经干细胞等干细胞,对卵巢早衰、帕金森、糖尿病等进行修复治疗。此领域目前不断有突破性进展。
系统重建
利用造血干细胞和间充质干细胞,可以重建机体的造血系统和免疫系统,可以成为白血病、再生障碍性贫血等血液疾病及免疫系统缺陷亢进疾病的一种常规治疗手段。
组织工程
组织工程,是用人工的方法在体外造(构建)一块组织,后来其范围扩展到用人工方法在体外进行器官构建。组织工程研究主要包括四个方面:种子细胞、生物材料、构建组织和器官的方法和技术以以及组织工程的临床应用。目前临床上常用的组织修复途径大致有3种:即自体组织移植、异体组织移植或应用人工代用品。通过采集来的成体干细胞,在体外环境人工培养形成一些组织器官,在回输到体内,用来替代人体病变的组织器官,培养形成的组织器官也可以用来作为疾病模型和药物检测模型。
基因治疗
基因治疗是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。也包括转基因等方面的技术应用。干细胞作为基因治疗的理想靶细胞,首先分离患者的干细胞,在体外对其进行基因修饰,将正常基因导入干细胞;再将改造过的干细胞静脉回输到患者体内,从而让正常基因在体内稳定表达,发挥防病治病的效果。
美容和抗衰老
“成人干细胞”肩负着补充组织细胞的作用,当细迅慧衡胞老化、死亡之后,干细胞自身分化更新进行补充。但干细胞数量会随着年龄的增长而逐渐减少。干细胞缺失和衰老是导致组织、器官乃至整个机体衰老的重要原因。干细胞具有的多向分化和修复的能力,可以在机体内不断更新和替换衰老的细胞,也可促使细胞不断增殖,从而源碧铅源不断的给身体补充健康鲜活的细胞,使身体由内而外散发青春的光彩。
干细胞技术存在的问题
虽然干细胞技术已取得了重大的突破, 但是仍面临许多方面的问题, 影响干细胞技术的应用。
01干细胞的培养
干细胞培养条件是干细胞技术的基础, 干细胞常规培养对环境条件的要求极为苛刻, 虽然已有研究者报道不用滋养层细胞和动物血清, 简单高效地培养i PS细胞, 同时减少移植过程中引发感染风险的方法, 但是简化、完善和规范培养条件仍然是科学家面临的一大难题。
02伦理问题
自1996年克隆羊多利诞生以来, 胚胎干细胞研究涉及到的伦理、宗教、道德、法律等问题, 存在争议, 严重阻碍了干细胞技术用于人类疾病治疗的发展。i PS细胞实现将成熟体细胞诱导成具有分化潜能的干细胞, 使得干细胞技术不再受制于ES细胞所面临的伦理问题。
03诱导分化的调节因子及机制
干细胞诱导的调节因子及其调控机制尚未清晰, 要诱导产生某种类型的组织或器官, 必须了解各种细胞因子的作用机制及其作用的时期, 否则可能获得功能不完善的器官或组织。此外, 对于损伤修复中干细胞参与作用的机制与分化方向研究证据不足, 心肌再生干细胞疗法的假阳性问题, 以及c-kit阳性心肌干细胞在心机功能恢复中对心肌再生贡献引发的争议受到广泛关注。
04定向诱导
体外或体内诱导干细胞分化成组织特异性细胞或者使体细胞经中胚层细胞状态转分化为其他细胞类型目前还存在很多不确定性, 尤其对于肾脏、心脏等细胞谱系复杂的组织器官。采用干细胞治疗难以确保心脏祖细胞分化成功能性心室心肌细胞, 以及难以确保能将分化的细胞输送和集成到患者的心室肌中, 很难定向形成组织或器官。
05诱发肿瘤
国外一些科学家在诱导神经细胞时发现, 混杂未分化细胞移植会导致肿瘤, 在移植过程中, 部分诱导细胞会表现出致肿瘤性。目前, 使用的诱导因子有Oct4、Sox2、Klf4和c-Myc, 但有些诱导因子, 如c-Myc虽然能够诱导干细胞的分化但使肿瘤的发生频率明显提高, 其对人类干细胞可能具有致肿瘤性。
06诱导器官和组织衰老
通过干细胞诱导获得的组织或器官, 虽然在形态和结构上是新生结构, 但是与其细胞核内遗传物质的衰老同步, 用患者细胞诱导产生的器官或组织无法保证正常功能。
07免疫排斥
干细胞疗法面临的瓶颈是移植后的免疫排斥。i PS细胞的产生被认为解决了ES细胞存在的免疫排斥问题, 但也有报道称i PS细胞诱发自身免疫反应。虽然细胞或器官移植后, 可使用免疫抑制剂抑制排斥反应, 但是长期使用免疫抑制剂有很大毒性及其他副作用。
伴随着干细胞科学的不断深入、干细胞技术的快速发展、干细胞监管法规的日益完善,干细胞科技在干细胞移植、干细胞新药、干细胞组织器官修复等众多领域的应用将越来越广泛,其所针对的适应证将逐年增加,成为解决众多临床未满足需求的重要生力军,为许多过去无计可施的疾病带来治疗的新希望。
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~