首页 > 外泌体 >正文

外泌体适配体(外泌体优点)

2023-04-25 03:57:49 作者:max
评论:0

本文目录一览:

重磅!非因指南性综述引领液体活检蛋白组技术新风尚!

2022年2月15日,非因生物以第一作者和通讯单位、联合美国纽约圣约翰大学陈哲生教授等在《Molecular Cancer》杂志上( IF:27.401 )发表了题为“Proteomics technologies for cancer liquid biopsies”的综述性文章,回顾了包括RPPA在内的多种高通量蛋白质组学技术在肿瘤液体活检中的研究进展及临床转化应用策略。

本文简要介绍了能够从液体活检样本中同时检测至少数百种蛋白质的高内涵蛋白质组学技术原理(图1),包括:RPPA反相蛋白微阵列技术(非因生物提供)、质谱技术、抗原/抗体阵列技术、基于核酸适配体(Aptamer)的检测技术和邻位延伸技术(PEA),并比较了上述各技术的优劣势(表1,嫌长不看也要看的表),同时介绍了各技术在癌症液体活检研究领域和临床转化方向的应用进展。( 原文链接: )

蛋白组学液态活检生物标志物研究背景

与肿瘤诊断的“金标准”组织活检相比,液体活检可通过最小入侵方式获得检测样本,同时克服异质性,实现动态监测。目前用于液体活检的体液主要为血液和尿液,但理论上,液体活检适用于任何人体内循环或其他人体相关的液体(图2)。作为大多数细胞功能的直接执行者和当前大多数癌症治疗中的直接药物靶标,多重蛋白质组学数据的分析,可能会在癌症进展的所有阶段实时提供更加宝贵的临床相关信息。液体活检样本中的蛋白质组具有巨大复杂性,如蛋白质丰度和翻译后修饰持续且快速的变化,同时蛋白质组技术与高度复杂的测序技术相比仍存在一定局限性,导致蛋白质组学的探究仍然落后于基因组技术,且目前临床转化效率极低,仅通过40多个基于液体活检的蛋白组生物标志物。因此,迫切需要新的蛋白质技术来实现在癌症液体活检中发现生物标志物的目标。

各技术比对

一、 质谱技术(MS)

由于体液样本中蛋白的复杂性,现代质谱技术通过不断优化样本制备方法、开发蛋白定量技术以及改变质谱扫描模式来提高检测精度。质谱法无需假设驱动,可以无偏倚地对样本中的蛋白进行扫描,因此可作为癌症体液样本早期生物标志物发掘的首选方法。目前基于质谱的生物标志物策略主要有:(1)在发现、核实、验证三个阶段,样本数量递增,而检测蛋白范围逐渐缩小的 “三角策略” ;(2)在发现和验证阶段均用“鸟枪法”在大样本队列检测尽可能多的蛋白,平行分析显示共同显著差异的蛋白可作为准生物标志物的 “矩形策略” 。目前基于质谱的液体活检已应用于卵巢癌、泌尿系统癌症、结直肠癌等多种癌症。但如想将质谱应用于广泛的临床试验,还需简化和标准化检测流程、提高检测的通量、精度和鲁棒性,并突破对翻译后修饰蛋白的检测局限性。

二、抗原/抗体阵列技术

抗体阵列 是将特异性抗体固定到带有修饰的平面基质上,通过荧光、化学发光或寡核苷酸标记的方式对样本进行多重靶标(通常为几百种)检测的方式。适用于血清学分析,如肿瘤相关的低丰度分泌蛋白的检测。但受到检测通量、检测动态范围、以及批次效应和信号饱和度、定量精确度的限制,抗体阵列仅可作为基于体液的蛋白组学分析的方法学之一。 抗原阵列 又称功兄槐帆能蛋白阵列,可作为抗原检测平台来检测抗体组成的细微变化,其早羡雹期热点应用是通过血清自身抗体(AAB)来进行生物标志物的研究。最全面的人类抗原阵列覆盖超过81%的蛋白,是血液蛋白全景分析的强有力的工具。但抗原阵列的靶点扩展、可重复性、批次效应和高昂的成本,仍使抗原阵列的应用有所局限。

三、 基于适体的检测

SOMAscan是目前高通量蛋白组检明信测的“新贵”工具,基于能够与不同蛋白质进行紧密结合的慢速率修饰的蛋白质适体(SOMAmer)进行检测。SOMAmer是寡核苷酸配体,结合上可光解的接头或荧光标签,通过构象识别与待测靶标结合,经生物素介导的纯化后,紫外光照射洗脱SOMAmers,并对其进行表征和定量已反应待测样本内的蛋白丰度。该方法具有超高特异性和亲和力,以及较低的批次间差异,目前可平行分析7000+种蛋白质,在结直肠癌和非小细胞肺癌的临床相关的生物标志物筛选中起到关键作用。但与抗体检测相比,现阶段可供研究使用的适体种类有限,尤其是翻译后修饰蛋白为导向的适体开发仍处于初期阶段。同时由于适配体对抗原决定簇的超高亲和力,在蛋白标志物研究的进程中会受到大量信号干扰,影响检测准确度。

四、邻位延伸技术(PEA)

PEA结合了基于抗体的免疫分析(ELISA)和PCR或二代测序(NGS)技术,与质谱检测相比,实现了用更低的样本量检测更广泛的动态范围,高灵敏、高准确、可重复且高保真识别。最先进的PEA检测目前由Olink商业化,可对3072个靶标进行标准测量。PEA首次应用于结直肠癌血液预后标志物的鉴定,后续应用于卵巢癌、前列腺癌等癌种的早期检测、伴随诊断和疾病监测。PEA检测与读取方式(qPCR、NGS)相关,当进行大队列样本分析时,仍需考虑实验误差和批次效应,其次翻译后修饰蛋白的研究对于抗体对开发具有很大瓶颈,对其捕获受到一定限制。

五、反相蛋白微阵列技术(RPPA)

RPPA起源于20年前,是将完全变性的蛋白裂解液固定在特殊载玻片上,通常每种裂解液会进行浓度梯度稀释,接下来用验证好的高度特异性的抗体孵育点样后的载玻片,通过信号放大化学显色或荧光检测捕获定量信息(图3)。RPPA可广泛应用于几百到超过一千个大样本的超稳健平行分析,定量精准,可对500+种细胞表面受体蛋白、细胞信号关键蛋白及蛋白修饰(磷酸化、乙酰化、甲基化等)、蛋白酶类、转录因子等各类代表性靶标进行分门别类的系统深度检测,包括直接和间接的上下游蛋白网络分析。基于以上特征,RPPA广泛应用于癌症基因组图谱项目(TCGA),其公共数据集可在线获取(TCPA,)。RPPA由于其最小的批次差异,可以作为蛋白质生物标志物验证的强大工具,并已成功应用于肺癌的新型生物标志物验证。另外,对外泌体蛋白的检测也成为RPPA在癌症液体活检中的另一项热点应用。 非因生物在国内搭建了基于MD安德森金标准的RPPA分析技术平台,先期完成了一系列工作流程的开发、验证及优化,不断扩展抗体库,并且建立了完备的生信分析体系。帮助国内科研,临床及工作者及广大药物研发相关用户快速高效开展疾病,尤其是肿瘤相关信号通路全景分析、分子机理挖掘、肿瘤相关药理学研究及靶向药物开发。RPPA复杂的技术流程和严格的抗体筛选过程将不再成为国内科研工作者的开展基础和转化医学研究的绊脚石。(点击下方“ 阅读原文 ”,了解详情)

展望

未来,在蛋白质组学技术不断发展的前提下,各技术之间的联合互补应用可以作为可行的、基于肿瘤体液活检的生物标志物正交验证策略(如图4所示)。非因生物依托RPPA技术等各项新型组学技术,将肿瘤精准治疗研究和转化作为核心使命,我们期待着一个更加精简但连贯且标准的蛋白类生物标志物开发流程的出现,并最终应用于癌症转化医学研究。

使细胞中组织分离开来,跟细胞分离开区别

分离是把细胞间的蛋白质等物质破坏,使细胞不再连在一起,分散是使细胞散开,形成单层的分离是原来细胞都粘连在一起,分离后细胞紧靠在一起但不粘连,压一压就可以把它们分散开来,叫分散外泌体的作用途径和方式:

外泌体由来源细胞释放入外环境后,距离较近的可由近分泌途径直接被受体细胞吸收,距离稍远的可由旁分泌途径被吸收,还有部分外泌体循环入体内作用于全身系统由内分泌途径被吸收。对于近距离的吸收,起初研究者认为外泌体仿橡宴是与受体细胞非特异性结合发生胞膜融合后进入细备银胞。但近来发现,这一过程其实与受体细胞表面特异性分子(如T细胞膜蛋白Tim4)的调节或受体细胞上4次跨膜蛋白有关,这说明外泌体的摄取并非完全随机发生。外泌体被受体细胞吞噬后可到达吞解体,也可到达晚期endosome的囊腔中,但exosome是如滚由吞解体裂解还是由晚期endosome释放于受体细胞质中,以及是什么原因导致了这种不同的吸收路线,目前还不清楚。且组织特异性是否参与远距离的靶向吸收循环系统中外泌体,仍是另一个潜在的研究方向。目前认为外泌体主要通过四种方式在细胞间发挥信息传递作用,1)外泌体作为信号复合物,通过细胞表面配体直接刺激受体细胞;2)外泌体在细胞间转移受体;3)外泌体向受体细胞运送功能蛋白或传染性颗粒;4)外泌体通过mRNA、microRNA或转录因子向受体细胞传递遗传信息。一旦外泌体被受体细胞吸收后,其内载有的脂质、蛋白质、mRNA、microRNA等成分可以通过改变转录和翻译程序。影响蛋白修饰,调节信号级联通路、关键酶反应以及细胞自动调节等方式影响受体细胞的细胞表型和功能,而来源细胞和受体细胞的种类及其生理病理状态将决定具体是哪种机制发挥主要作用

适配体使用前为什么要加热

多次再生以及再生后重复使用。在适配体和外泌体重悬液孵育后,利用滤膜去除游离的适配体,与外泌体结合的适配体谨旁拿则通过高温加热的方法分离,结合有细菌内毒素的磁珠适配体传感器在加热到95℃的条件下可以实现多次再生以及再生祥搭后重复启陵使用。

外泌体是做什么的?

外泌体(Exosomes)是一种双磷脂膜囊泡,含有蛋白、脂质及核酸等多种成分,是细胞外囊泡的一种。外泌体体积小,直径在40~200 nm,在透射电镜下具有典型的杯状结构。几乎所有的细胞都分泌外泌体,外泌体在细胞间的连接中发挥重要作用。

01、外泌体的形成

细胞发生内吞后,内陷的细胞膜形成数个小囊泡,小囊泡相互融合形成了早期内体(early endosome),逐渐成熟的早期内体膜多处凹悔唤陷并向内出芽碧谨凯形成含管腔状囊泡(intraluminal vesicle,ILVs)的晚期内体(late endosome);富含ILVs的内体称为多囊体(multivesicular body,MVBs)。MVBs有两个去向:一部分MVBs与溶酶体融合,以降解其内容物;另一部分MVBs与细胞膜融合,释放ILVs到细胞外,这些分泌的ILVs即为外泌体。

02、外泌体的功能

外泌体是一种细胞连接物,能够输送蛋白、脂质及核酸到靶细胞,可以在血管形成、抗原呈递、炎症反应和细胞增殖及分化等各种生物过程中发挥功能。

外泌体可晌中以通过两种途径影响受体细胞,其一,外泌体和受体细胞间的配体-受体相互作用,无需将外泌体或其内容物内化到靶细胞。其二,外泌体通过膜融合或内吞作用进入细胞,其成分被摄取后释放到细胞质中,通过调节特定的基因表达和信号通路影响宿主细胞,最终导致细胞功能或表型的改变。

再生医学材料的黄金搭档:外泌体与细胞外基质

- 01 -

外泌体的概念

上世纪80年代,外泌体首次被科学家发现,并且在很长时间内被认为是细胞的代谢产物。由于当时分析和研究的手段受限,外泌体的功能并不明晰。直到21世纪,科学家们才通过各种新技术,分离和提取出外泌体,并发现 外泌体在细胞之间充当重要的沟通介质,进而影响细胞而至组织的生理活动。

细胞可以通过分泌细胞外囊泡与临近细胞或者远端细胞进行通信,而外泌体正是其中一类尺寸小于200纳米的细胞外囊泡。外泌体是在多泡核内体或多泡体中产生的,并在这些囊泡与质膜融合时分泌。外泌体由与细胞类似的磷脂双分子层组成,该双分子层含有跨膜蛋白和胞质蛋白和RNA;外泌体的内部包含一系列蛋白质 (胞质、骨架和生长因子) 和传递特定功能线索的miRNAs。因此,外泌体可以通过其表面的磷脂双分子层上蛋白靶向到受体细胞。外泌体一旦附着在靶细胞上,可通过受体-配体相互作用诱导信号转导,或通过内吞汪携和/或吞噬作用内化,甚至与靶细胞的细胞膜融合,将其内容物传递到靶细胞的胞质中,从而改变受体细胞的生理状态。外泌体具有良好的生物相容性,不易在机体内引发免疫排斥反应。

- 02 -

外泌体的提取

所有的细困返伏胞都可以分泌外泌体,机体的体液内和间质中均含有大量的外泌体。由于生物体内所含有的细胞或者蛋白非常丰富,因此从体内提取外泌体是非常困难的,而且外泌体来源的细胞也无法确定。

现如今有两类广泛使用的用于提纯外泌体的方法:超速离心法和Thermo Fisher等公司生产的提纯试剂盒。

超速离心法,主要是通过将实验室培养干细胞所得到的培养基通过滤膜滤掉尺寸较大的细胞碎片及细胞外囊泡后,通过超速离心机在100,000g的离心力的作用下富集得到外泌体。

提纯试剂盒,主要是通过试剂包被外泌体,使其尺寸和重量增大,从而在10,000g的离心力即可得到外泌体。试剂盒的使用有导致外泌体污染的风险,在科研领域超速离心法更为常见。

- 03 -

外泌体的生物学特性

由于外泌体在再生医美领世颤域显示出极大前景,这也迎来产业化合作的新浪潮,眼下外泌体似乎已经成为下一个生物医药的黄金赛道。科学家们普遍认为, 外泌体具有其独特的生物学特征,可以反映来源细胞的表型 。

图 5 外泌体促进皮肤修复

不同细胞分泌不同的外泌体,因此外泌体的应用是多种多样的。一方面, 外泌体被认为是多种癌症的疾病诊断生物标志物。 外泌体独特的miRNA谱图和疾病载体作用,使得其频繁出现在卵巢癌、胶质母细胞瘤、黑色素瘤、前列腺癌和结肠癌。另一方面, 外泌体也可以作为细胞信号传导的有效媒介而广泛用于医学再生领域。 例如,它们能够将RNA和蛋白质的信息从来源细胞转移到周围环境中的其他细胞。实验证明,来自小鼠胚胎干细胞的外泌体在体外促进了小鼠造血干细胞的存活和扩展,同时也上调了受体细胞中与多能性相关的转录因子。干细胞来源的外泌体与生物材料相结合,促进骨组织以及关节软骨的修复和再生。

在皮肤组织再生中,外泌体的应用尤其广泛。 如脂肪源外泌体能通过减少IFN-α的分泌而发挥免疫抑制作用,从而抑制T细胞的激活。此外,外泌体含有免疫调节蛋白如TNF-α、巨噬细胞集落刺激因子 (MCSF) ,从而通过良好的炎症调节保证了伤口愈合。而在皮肤愈合过程中,外泌体则能通过优化成纤维细胞特性加速皮肤伤口愈合。在一项研究中发现,外泌体上调199个miRNA,下调93个miRNA,促进真皮成纤维细胞增殖和分化,加速皮肤再生。

图 6 外泌体促进皮肤细胞增殖

总而言之,干细胞来源的外泌体作用广泛。 在皮肤再生中,外泌体可以通过调控炎症、促进皮肤修复等多方面提供作用;在疾病发展中,外泌体也参与多种病理通路。 在未来,无论是组织再生、皮肤修复、还是疾病研究,外泌体都将在其中扮演重要角色。

- 04 -

外泌体的缺陷

外泌体具有诸多优点,在医用再生中具有难以忽视的价值。然而,外泌体的应用却还有所局限。

最适用于提纯外泌体的超速离心法,在提纯得到外泌体的过程中会导致大量的外泌体损失,至少80%的外泌体会因为收集的损失或者在超离过程中其独特的磷脂双分子层的膜破碎而无法维持其正常形态。

此外,外泌体在提纯后其保存比较困难,需要保存的试剂具有与体液类似的渗透压从而维持其磷脂双分子层的膜结构,否则其内含的具有生物功能的蛋白质和miRNAs也容易失去活性。另外,外泌体起到信号传导作用,但本身并不会提供结构支持。因此,在修复领域,外泌体难以单独使用。

- 05 -

细胞外基质:外泌体的最佳搭档

所有细胞均可分泌外泌体,外泌体充当着细胞之间信息交流的介质,因此外泌体生理功能的实现是通过一个细胞“出”而“进”入到另一个细胞内。在组织内部,必然要穿越细胞外基质。

因此,外泌体更适合作为细胞外基质的一部分来发挥价值,而细胞外基质的独特生理结构和生理稳态一来可以帮助维持外泌体的活性、二来也能与外泌体协同作用,实现更好的修复和再生效果。

细胞外基质是外泌体最理想的载体

在医用再生领域,科学家们研究各种各样的生物材料,并与外泌体进行复合促进组织的修复和新生。细胞外基质无疑是最安全的并且可以与外泌体协同发挥作用的生物材料。细胞外基质本身即源于人体,具有多元的组成 (胶原蛋白、弹性蛋白、层黏连蛋白等等) 。

一方面, 细胞外基质能够起到结构支持作用,作为承载材料提供组织再生的根基 ;另一方面, 细胞外基质中复杂的结构和靶点可以维持外泌体的活性,从而高效发挥外泌体的性能 。外泌体可以通过进入细胞内发挥其优异的生物学功能, 而细胞外基质作为载体即可以为细胞的黏附和迁移提供平台。如果没有细胞外基质所提供的平台,那么外泌体会很快随着体内的生理循环和代谢而流失,从而失去了其作用效果。众所周知,外泌体价格昂贵。 当外泌体由细胞外基质承载、由细胞外基质保护时,才会更好地提高其生物利用度 ,取得更好的修复效果。

细胞外基质提供适应的修复微环境

组织修复和再生,与细胞微环境息息相关。简单来说,微环境由两个基本组成部分组成,一个是细胞外基质 (ECM) ,而另一个是细胞分泌的外泌体、生长因子等功能性物质。二者缺一不可,彼此相辅相成、紧密结合。因此,光有外泌体,没有细胞外基质是远远不行的。

其实,除去细胞外基质 对外泌体的负载和保护作用,其本身也具备出众的再生和修复能力 。除了提供细胞存在的平台,细胞外基质的多元组成既可以为细胞的生理活动提供养分,并驻留在原位,成为机体自身的细胞外基质的一部分;又能够通过其本身的生物学特性来协同外泌体,实现更好的修复和再生效果。在经典的修复再生过程中,细胞外基质可以调节干细胞的表型和表达,而外泌体则含有控制干细胞分化的表型特异性指导因子 (miRNA,RNA和蛋白质)。

简而言之, 细胞外基质可以从拓扑结构、生物力学、功能靶点等多个维度与外泌体、生物因子共同作用,从而形成适于组织修复的胞外微环境。

首先,细胞外基质所含有的多种蛋白、多糖成分构建出其独特的三维结构和表面拓扑学特征。除支撑组织的生理形态外,还能够调控募集细胞的黏附、增殖和分化行为。近年来,人们更是发现细胞外基质构建的拓扑学结构与免疫细胞的免疫应答等行为息息相关,进而调控组织再生。

再者, 细胞外基质本身具有其独特的生物力学性质 。不同弹性模量、不同硬度的基质,能够引发细胞的不同表现行为和分化方向,也会引起细胞分泌和募集因子的不同。

细胞外基质极为多元的组成能提供不同的生物学效果,从而建立修复微环境 。举例来说,细胞外基质中的纤连蛋白因可与细胞表面的整合素蛋白的α5β1结合,充当修复过程中细胞与细胞外基质交流沟通的重要参与者,并且调控细胞的黏附、增殖、形态和分化等行为;蛋白聚糖通过参与调节细胞外基质的组装和维持,并通过与生长因子的相互作用参与细胞增殖等细胞行为,在组织的生理和生物力学功能中发挥重要作用。正是由于细胞外基质打下的坚实基础,才能让外泌体、细胞因子等活性成分进一步“锦上添花”。

另外,近几年研究中还发现,细胞外基质的结构能结合和锚定多种生长因子(如VEGF,HGF等)、多肽短链。一方面, 通过构型调整来更好地发挥其生物活性 ;另一方面,则能 形成生长因子梯度,从而介导修复和再生过程的进行 。可以想象,这是唯有细胞外基质才能实现的高度复杂而有序的生物过程。相比之下,仅仅使用外泌体完全无法实现上述空间上的介导过程。这也解释了为何直接使用外泌体或生长因子时,往往修复和再生效果并不如人所愿。

关于细胞外基质和外泌体之间的作用,目前依然还在不断研究中。然而,我们已经可以知道的是: 细胞外基质是组织再生的舞台,而外泌体则是舞台上的演员 。 演员可以让舞台更加 熠熠生辉 , 但舞台却是整个根基所在 。 二者有机结合,则能带来最好的演出效果。

- 06 -

细胞外基质/外泌体组合的应用

目前,细胞外基质/外泌体这一组合有了不少应用实例,其作用效果极为明显。

国外的研究中, 以细胞外基质中的胶原为支架组成并负载外泌体。 这一体系增加了外泌体在体内的保留时间、延长了释放过程,同时也在心脏组织的修复中取得了更好的效果。无独有偶,在另一项研究中,科学家则利用了仿细胞外基质的丝蛋白/壳聚糖复合体系,并通过慢性糖尿病患者皮肤创面愈合模型来考察了作用效果。可以发现, 这一仿细胞外基质和外泌体体系具有协同作用,能加速皮肤创面再生。

而国内的部分研究则更进一步,将“全成分”的细胞外基质、玻尿酸、外泌体结合,并考察了其在人体上的作用效果。从临床实验中可以发现,该体系能够显著淡化眼纹,令眼部更显年轻态。随着年龄的增加, 部肌肤胶原蛋 流失增加,弹性纤维 化断裂,基底层上真皮与表皮连接不再那么紧密。于是乎,就产生了各类细纹。而通过细胞外基质、玻尿酸、外泌体这一复合体系,一方面外源性途径引入了胶原、糖胺聚糖等重要基质成分,撑起来了眼周结构;另一方面通过其本身的生物学效应,内源性途径增加细胞外基质分泌。通过双管齐下的方式,迅速起效。

- 07 -

文末小结

随着技术的进步,外泌体已经越来越被人们熟知,其应用也愈加广泛。外泌体是具有纳米尺寸的细胞囊泡,具有高生物活性,能参与细胞之间的交流,调控炎症水平、促进组织再生。然而,外泌体提取较为困难,本身也不具备结构性的功能,因此单独使用有所局限。

作为细胞外基质中的一部分,当外泌体回到细胞外基质中时,能够发挥出更为强大的作用,更起到“锦上添花”的效果。细胞外基质一方面是外泌体最理想的载体,帮助维持外泌体的活性;另一方面细胞外基质能够构建出最适宜再生的细胞外微环境,从而让外泌体能更加有的放矢。

目前,国内外相关的研究正如火如荼地进行中。相信,不久的将来,细胞外基质/外泌体这样的明星组合会越来越多地出现在我们面前。

参考文献

谁持彩练当空舞 :干细胞基础与临床研究进展

— END —

- 科普 情怀 责任 -

app
公众号
投稿 评论 关灯 顶部