胰岛素是人体内唯一的一种降糖激素,可以打开细胞,让血液中的葡萄糖进入细胞,并在细胞中燃烧以提供身体能量,但有时这样的机制会突然失灵,葡萄糖会无法进入细胞,而聚集在血液中,即使人体分泌再多胰岛素,也无法让血糖降下来,这就是出现「胰岛素阻抗」的现象。
为什么会产生胰岛素阻抗?
胰岛素阻抗就是胰岛素的生物学作用减弱,无法充分发挥。而形成胰岛素阻抗的原因相对复杂,主要是包括遗传因素和环境因素,遗传因素包括遗传缺陷与基因突变,而环境因素则包括肥胖、吸菸与缺乏运动等后天行为。
罹患胰岛素阻抗症状的特征
出现胰岛素阻抗症状的人,通常都会伴随着肥胖症、高血糖、高胰岛素血症,甚至还会有高血压、高尿酸血症、血脂紊乱等病理表现,而这些症状通常会合并出现,被称之为「胰岛素阻抗症候群」。
特别是当一个人体重过重时,身体中的细胞对于从胰腺释放的胰岛素不太敏感,相关研究证实,脂肪细胞对胰岛素阻抗的抵抗力要比肌肉细胞更大,如果一个人的脂肪细胞比肌肉细胞更多,那么胰岛素就变得不是那么有用。
而胰岛素阻抗是个沉默的隐形杀手,是心血管疾病、脂肪肝、三高(高血糖、高血脂、高血压),甚至是癌症发生的重要因素。医界的观念认为糖尿病前期的患者所面临最主要的问题就是胰岛素阻抗,所以,改善胰岛素阻抗现象是前期糖尿病患者所必须努力的目标,透过有效的方法,是可以逆转病况,彻底摆脱糖尿病的阴影。
如何改善胰岛素阻抗?
要想改善胰岛素阻抗的状况,最重要的就是要改变生活习惯,所以必须做到下面4件事:
一、正确的饮食:
要控制每天摄入的总热量,均衡饮食并保持三餐的合理配比,对于糖分、精致谷物与动物脂肪的摄取都要有所控制,并增加蔬菜、水果与全谷物的进食份量比例。
二、减重瘦腰:
肥胖是出现胰岛素阻抗的最重要原因,特别是腹部肥大的人,内脏脂肪与腹部脂肪含量过多,直接影响胰岛素阻抗,所以要纠正胰岛素阻抗最好的作法就是减肥,减少胰岛素的需求,同时增加胰岛素的敏感性,让它在需要的时候可以打开细胞,让葡萄糖从血液中进入细胞进行燃烧。
三、科学运动:
运动对于改善胰岛素阻抗有很大的作用,因为运动可以帮助细胞更好的利用胰岛素,特别是肌肉细胞。当运动时时需要大量消耗葡萄糖提供能量,人体的血液徝环会加速,血液中多余的葡萄糖可以不用透过胰岛素就被肌肉细胞利用,此时只要分泌少量的胰岛素就可以维持血糖平衡。如果不达到足够的运动量,对改善胰岛素阻抗起不了作用。
因此糖尿病前期的患者只要定期进行适量是适宜强度的运动,就有机会可以逆转病况,摆脱糖尿病的束缚。美国心脏协会建议每周运动5次,每次30分钟,将有助于提高胰岛素的敏感性。
四、药物治疗:
如果靠著改变生活与饮食习惯,再加上运动还是无法改善胰岛素抗阻,噻唑烷二酮类 (TZDs)是强效的胰岛素增敏剂,可以使前期糖尿病的胰岛素阻抗减轻33%,还有罗格列酮(rosiglitazone)与酮基吡格列酮(pioglitazone),也有很好改善胰岛素敏感性的作用。
原文链接: Ying et al., 2017, Cell 171, 372–384. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity.
这篇文章简单来讲讲的是: 驻留在脂肪组织中的巨噬细胞利用外泌体调节全身胰岛素反应。
文章亮点:
【摘要】
miRNA是一种调节分子,可以被包装在外泌体中从细胞中分泌出去。这里,我们展示了肥胖小鼠脂肪组织巨噬细胞分泌的含有miRNA的外泌体(Exos)给瘦小鼠使用时,可导致瘦小鼠发生葡萄糖耐受不良和胰岛素抵抗。相反,从瘦老鼠身上获得的ATM Exos,注射给肥胖小鼠,可改善肥胖小鼠的葡萄糖耐量和胰岛素敏感性。 miR-155 是肥胖小鼠ATM Exos中高表达的miRNA之一,更早的研究表明PPAR 是miR-155的靶基因。我们的结果表明,与对照组相比,敲除miR-155的小鼠具有胰岛素敏感性和葡萄糖耐受性。此外,将野生型小鼠的骨髓移植到miR-155敲除小鼠中可以缓和这种表型。综上所述,我们的研究表明ATM Exos中含有miRNA。这些miRNAs可以通过旁分泌或内分泌调节机制被转移到胰岛素靶细胞,对细胞胰岛素反应、胰岛素敏感性和整体葡萄糖稳态具有强大的影响。
引言
胰岛素抵抗是2型糖尿病的重要病因,肥胖人类胰岛素抵抗最常见的原因。由于全球肥胖率的持续上升,2型糖尿病的患病率也随之上升。人类和啮齿类动物肥胖的特征之一是脂肪组织、肝脏、可能还有骨骼肌的慢性未解决的炎症。这种由肥胖引起的组织炎症反应其中一个引人注目的组成部分是促炎巨噬细胞的积聚,尤其是在脂肪组织和肝脏中。许多早期的研究检测了这种慢性组织炎症状态,并提出促炎细胞因子,如肿瘤坏死因子(TNF-a),是由组织巨噬细胞分泌的,可直接抑制胰岛素敏感性,是肥胖诱导的胰岛素抵抗的一个潜在病因。然而,抗TNF-a抗体在人类胰岛素抵抗和葡萄糖代谢方面的治疗疗效不显著,提示有其他巨噬细胞分泌因子和免疫细胞因子参与了胰岛素抵抗。最近,花生四烯酸衍生的二十碳三烯白三烯B4通过其特异性受体BLT1发挥作用,被认为是直接降低肝细胞和肌细胞胰岛素信号通路的因素之一。Galectin-3是另一种巨噬细胞分泌因子,既可促进促炎反应,又可通过抑制胰岛素受体信号通路直接阻断胰岛素作用。在这篇文章中,我们报道了ATMs通过分泌含有miRNA的Exos进入循环系统来调节胰岛素作用的新机制。
miRNA与mRNA的结合导致靶mRNA被募集到RNA诱导的沉默复合物(RISC)中,从而导致转录停滞和mRNA的降解。除了这种本身的细胞内作用,miRNA可以以外泌体内含物的形式被细胞分泌出去,既可以在局部发挥作用,也可以进入血液循环,在远端发挥作用。也有证据表明,这些Exos可以被运输到邻近或遥远的受体细胞,调节受体细胞的功能。这些现象导致我们假设ATMs可分泌外泌体miRNA,作为细胞外分子调节细胞胰岛素作用和系统胰岛素敏感性。
结果
1. ATMs分泌外泌体miRNA
文章第一步先确定ATMs可以分泌包含miRNA的外泌体。
2. 从肥胖小鼠中提取的含miRNA的Exos促进胰岛素抵抗
从肥胖小鼠中提取的含miRNA的Exos会损害三种主要胰岛素靶组织的胰岛素敏感性。
3. 肥胖小鼠ATM-Exosomal miRNAs损害细胞的胰岛素敏感性
肥胖ATM-Exos在体内的作用显著,我们同时对脂肪细胞、肌细胞和肝细胞的进行了相应的体外研究。
4. 来自瘦小鼠的ATM-Exos会降低肥胖引起的胰岛素抵抗
从反面去验证上面实验得到的结果。
5. 肥胖诱导ATM-Exo中miRNA的表达变化
现在开始做机制。
6. MiR-155损害细胞胰岛素信号通路
上一个结果中列举了MiR-155表达的趋势,现在开始做表达差异的功能。
7. ATM-Exo miR-155促进肥胖诱导的胰岛素抵抗
miR-155抑制细胞胰岛素信号转导。
这篇文章先是确定了表型:ATMs可以分泌外泌体,这些外泌体会与胰岛素抵抗相关,胖ATM-Exo会促进胰岛素抵抗,瘦ATM-Exo可以降低肥胖引起的胰岛素抵抗。
然后去探讨为何ATM-Exo可以发挥这样的作用。发现ATM-Exo包含miRNA,瘦ATM-Exo与胖ATM-Exo中miRNA的表达差异显著,肥ATM-Exos中miR-155的丰度明显高于瘦ATM-Exos。选择这个miRNA主要是根据研究经验(也有可能是课题组刚好有这种转基因小鼠)。然后选了miR-155众多靶基因中的一个和胰岛素信号通路相关的靶基因PPAR ,同理选了GLUT4。
最后从正、反、在体、离体等多个角度去show了一些支持猜想的结果。
这篇文章思路简洁,逻辑连贯,但是在过渡到选择靶分子的这一步没有必须性。按照这个差异表达结果其实可以选择那些差异表达的另外某个miRNA去做,说不定也可以做出来相似的结果。
这篇文章的方法部分可以借鉴一些ATMs分离,外泌体分离提纯的方法,还有transwell共培养,骨髓移植等技术之前没接触过,需要按需学习。
原文链接: Ying et al., 2017, Cell 171, 372–384. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity.
如果你关注了我,希望你与我一起学习,一起成长!❤
肥胖与糖尿病关系非常密切。据统计,我国每100人中就有1人患糖尿病,肥胖人中的糖尿病患者是非肥胖者的4倍,而且糖尿病的发生率随着肥胖程度的增加而增加。在40岁以上的糖尿病病人中,约有70%~80%的人是由于过于肥胖所引起的。
糖尿病是因为胰岛素不足,以致糖在体内的利用受阻,血糖升高,并有大量的糖从尿中排出,同时还伴有脂肪和蛋白质代谢紊乱的一种疾病。胰岛素是人体内唯一的降血糖激素,胰岛素绝对或相对不足是导致糖尿病的主要原因。在肥胖病人中进行血浆胰岛素的检测发现,有糖尿病的肥胖病人,其血浆胰岛素水平显著高于体重正常的糖尿病人,甚至高于正常人(体重正常无糖尿病者);血糖正常的肥胖病人,其血浆胰岛素水平则更高,约为正常人的4倍。
病理检查证实,肥胖者的胰岛β细胞(分泌胰岛素的细胞)肥大增生,提示肥胖病人体内胰岛素的作用降低,存在胰岛素抵抗。进一步的研究发现:肥胖病人脂肪细胞增大,是导致胰岛素下降的主要原因。
由此推论,肥胖病人发胖初期脂肪细胞增大后,胰岛素的作用降低,为维持血糖的正常水平,胰岛β细胞则增生肥大,增加胰岛素的分泌量。长期肥胖,胰岛β细胞将因过度负荷而受损,其结果则是导致胰岛素分泌不足,诱发糖尿病。可见,肥胖本身就是导致糖尿病的病因之一。临床观察中发现,肥胖病也往往是糖尿病的前驱表现。如能尽早减轻体重,上述情况就可以得到明显的改善,血浆胰岛素的水平也能下降。
肥胖是发生糖尿病(主要是2型糖尿病)的重要危险因素之一。在长期肥胖的人群中,糖尿病的患病率明显增加,可高达普通人群的5倍以上。从另一方面来看,在2型糖尿病人中,80%都是肥胖者。而且,发生肥胖的时间越长,患糖尿病的机会就越大。还有,腹部型肥胖的人患糖尿病的危险性远远大于臀部型肥胖的人,腰围/臀围的比值与糖尿病的发病率成正比关系。那么肥胖者为什么容易得糖尿病呢?根本原因在于肥胖者体内存在着一种特殊的病理状态,叫做胰岛素抵抗。胰岛素是人体内最主要的降血糖激素。人在进食后将大量的糖分吸收入血液,通过血液循环运往全身各处。只有依靠胰岛素,血糖才能进入细胞,被人体利用,同时血液中的葡萄糖,也就是血糖水平被胰岛素维持在一定的范围内。胰岛素能够起到作用,首先需要与细胞膜上的胰岛素受体结合,然后牵动细胞内一系列的信号传导物质,把“糖来了”的消息一层层地传导到细胞深处,然后由细胞深处一种叫做“葡萄糖转运子”的物质调动到细胞膜表面,通过它把葡萄糖搬进细胞内,用来产生能量。一时用不了的葡萄糖就被转化成糖原储存起来。很遗憾,在肥胖者体内,上述的葡萄糖转运机制发生了很多毛病,包括:①细胞表面的胰岛素受体数目有所减少;②单个受体的功能也有所下降;③受体被胰岛素激活后,向细胞深处传导信号的功能受到损害;④葡萄糖转运子的数目减少,功能减弱;⑤肝脏将葡萄糖转化成糖原并储存起来的功能有所不足。由于上面各种原因,细胞对胰岛素的作用产生了抵抗,血液中的葡萄糖就很难进入细胞内。这就是胰岛素抵抗现象。早期肥胖者的胰岛素分泌功能虽然还正常,但是由于胰岛素抵抗,胰岛素作用的效率就下降了。为了克服胰岛素抵抗,胰腺就会大量合成胰岛素,造成肥胖者血胰岛素水平大大高于普通人,这就是所谓“高胰岛素血症”。肥胖早期还可以勉强通过高胰岛素血症来把血糖维持在正常范围,随后就有可能由于过度工作,胰腺合成胰岛素的功能渐渐衰竭,胰岛素的生成就渐渐不够把血糖降低到正常范围,于是就出现了糖尿病。所以,肥胖是很容易造成糖尿病的。值得注意的是,有效的减肥可以预防糖尿病的发生,或是明显减轻糖尿病的程度。
原文链接: Cell Metabolism 30, October 1, 2019. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. IF: 22.415
miRNAs可在血清和其他体液中发现,并可作为疾病的生物标志物。更重要的是,分泌型miRNAs,尤其是胞外囊泡(EVs)如外泌体分泌的miRNAs,可能介导不同组织间的旁分泌和内分泌通讯,从而调节基因表达和远程调控细胞功能。分泌型miRNAs受影响时可能会导致组织功能障碍、衰老和疾病。 脂肪组织是循环外泌体miRNA的重要来源。 在许多代谢条件下发生的脂肪组织质量或功能的改变可以导致循环miRNA的改变,从而引起机体一系列的功能改变。
这篇综述回顾了得出这些结论的研究,并讨论了如何为新的研究奠定基础,有助于进一步确定细胞外miRNA作为细胞间通讯的重要介质如何发挥强大作用。
综述分为以下几个部分:
MicroRNAs (miRNAs)是由体内各种细胞产生的约22个nt的调节性非编码小RNA。许多miRNAs在进化过程中高度保守,尽管它们的多样性和数量与机体的复杂性相关。秀丽隐杆线虫的基因组包含437个miRNAs,小鼠超过1500个,而人类的miRNAs在2000到3000个之间(数据来自miRBase,第22版)。许多miRNAs可以无所不在地表达,而其他的则具有组织特异性。这种分布模式是由细胞内miRNA前体的转录和转录后调控所驱动的。
在细胞核中,初级miRNAs(pri-miRNAs)被RNA聚合酶II转录,然后由微处理器复合物(内含核糖核酸内切酶DROSHA及其RNA binding partner DGCR8)或剪接机制的组件进行处理。这导致了约70个nt的pre-miRNAs,被XPO5和Ran GTPase输出到细胞质中。pre-miRNAs被III型核糖核酸内切酶DICER和RNA结合蛋白TRBP与PACT共同处理,产生双链miRNAs duplex。这些miRNAs duplex被加载到RNA诱导的沉默复合体(RISC),在RISC中,Argonaute-2 (AGO2)及其分子伴侣HSC70/HSP90介导双链miRNAs duplex的一条链与其靶mRNA结合(另一条链一般很快被降解了),抑制mRNA的翻译和/或加速mRNA的降解。也有一些miRNAs发挥非常规的相反作用:诱导转录和上调蛋白表达的。不依赖DICER的miRNA生成也有报道,但它们的影响有限。
与mRNAs类似,miRNA表达谱也可作为细胞标志物。例如,miR-122在肝脏中高度表达,占该组织中总miRNA表达量的70%。肌肉细胞中富含miR-1、miR-133a、miR-133b、miR-206、miR-208a、miR-208b、miR-486和miR-499,因此这些miRNAs被称为myomiRs;miR-9和miR-124几乎完全在大脑中表达,后者占了该组织中近50%的miRNA含量;而β细胞是唯一高丰度表达miR-375的细胞。另一方面,一些细胞,如脂肪细胞和干细胞,表达多种miRNAs。
为了理解miRNAs 的表达如何在特定细胞类型中促进该组织的发育和稳态,产生了多种 细胞类型特异性DICER或DGCR8敲除小鼠 。中枢神经系统、胰腺、骨骼肌和心肌的DICER敲除使小鼠不能成活或出现严重的发育缺陷。而肝脏特异性DICER敲除小鼠(LDicerKO)和脂肪细胞特异性敲除小鼠DICER (ADicerKO)或DGCR8 敲除小鼠(ADgcr8KO)在成年之前与野生型的幼鼠难以区分,直到它们开始出现代谢功能障碍。包括LDicerKO小鼠肝脂质沉着症和早发性肝细胞癌;ADicerKO和ADgcr8KO小鼠部分出现脂肪营养不良和胰岛素抵抗。许多表型是因为miRNAs生成受阻改变mRNA半衰期和细胞的翻译功能,但是有一些表型因为其他组织中基因表达和功能的变化引起的二级改变,提示细胞非自治组织miRNAs损失的影响。当ADicerKO小鼠移植正常脂肪组织后,其肝脏基因表达发生逆转,提示这些变化受脂肪组织分泌的miRNAs调控。这种现象产生一个假象:每个细胞的miRNAs是内源性miRNAs产生和外源性miRNAs摄取的总和。要证实这一假设,就需要发展稳健的技术来追踪miRNAs起源和运输。
miRNAs可以通过囊泡转运和蛋白载体的机制被细胞输出和导入是miRNAs具有潜在的细胞和组织间通讯作用的强有力支持。这个概念最早是由Valadi等人在 2007年 提出的,他们在不同细胞系分泌的胞外囊泡(EVs)中识别出大量的mRNAs和miRNAs,这些囊泡可以被其他细胞吸收,然后将mRNAs和miRNAs释放到靶细胞中。 2010年 有研究表明,体液中存在miRNAs,且它们的水平与疾病进展相关。从那时起, 细胞外miRNAs转运机制 被广泛研究,目前已知 的两条主要途径 是: (1)通过EVs主动转运;(2)作为蛋白-miRNA复合物的一部分转运 。此外,可能有一些miRNAs是从破损或受损的细胞中泄漏出来的。
通常,多泡体(MVBs)与质膜融合产生的较小的EVs ( 200nm )称为外泌体(图1),而质膜直接向外出芽和裂变形成的较大EVs ( 200nm )称为微囊泡。直接出芽也能产生类似外泌体的小泡,被称为梭状囊泡或胞外体。
除EVs外,miRNAs还可能在含有蛋白复合物的血液中被运输。这些复合物也可以进入细胞并传递miRNAs来抑制靶mRNA。 低密度(LDL)和高密度(HDL)脂蛋白 都可以在循环中运输miRNAs。在HDLs的情况下,结合的miRNAs可以通过B类I型清道夫受体被受体细胞吸收并在细胞内释放从而调节受体细胞基因表达。
尽管EVs相关和脂蛋白结合的miRNAs在功能上很重要,但它们只是占循环中发现的所有miRNAs的一部分。在一些研究中,在人类血清中发现超过一半的miRNAs可能与核糖核酸蛋白结合,包括argonaute ( AGO2 );然而,其中只有一小部分是通过这种方式运输的。核仁蛋白核磷蛋白1 (nucleophosmin 1, NPM1 )也被发现可以携带和保护细胞外miRNAs不被降解。
生物标志物是一种可以用于疾病检测和/或预后预测的分子。一个好的生物标志物最重要的四个特征是特异性、敏感性、稳定性和非侵入性。 循环miRNAs水平的变化与多种疾病相关,包括2型糖尿病(T2D)、肥胖、心血管疾病(CVD)、癌症、神经退行性疾病等。
这部分内容参考我写的 ChemicalReviews综述 ,那里面有更详细的描述。
脂肪组织的功能除了以甘油三酯的形式储存能量外,还能分泌调控全身新陈代谢的分子来维持机体内环境平衡。这些分子包括脂肪产生的激素(被称为脂肪因子),信号脂质,炎症介质和EVs miRNAs。 ADicerKO小鼠约三分之二的循环miRNAs显著减少,这表明了脂肪组织对循环miRNAs库的显著贡献。 患有各种脂肪营养不良的患者,其循环外泌体miRNAs也有显著改变。重要的是,脂肪组织分泌的miRNAs已经被证明可以到达肝脏和肌肉等器官,并调节该组织基因和蛋白质的表达。
脂肪来源的循环miRNAs以内分泌方式控制代谢稳态的一个例子是2017年Thomou等人通过脂肪来源的miR-99b调控肝脏FGF21。 ADicerKO小鼠循环EVs中的miR-99b水平降低,肝脏中Fgf21 mRNA及3' UTR-报告基因活性的上调,这两种现象可通过往循环中加入含有 miR-99b 的EVs显著纠正。ADicerKO小鼠还显示出其他组织(包括肌肉、β细胞和骨骼)功能障碍,以及全身胰岛素抵抗。 但具体是哪些循环外泌体miRNAs参与了这些表型仍有待确定。
其他研究表明,来源于脂肪EVs的miRNAs也可以发挥旁分泌功能。从含有 miR-16、miR-27a、miR-146b和miR-222 的大脂肪细胞中释放的EVs可以转移到小脂肪细胞中,从而刺激其脂肪生成和脂肪细胞肥大。脂肪细胞分泌这些miRNAs是由游离脂肪酸和H 2 O 2 诱导的,在老年小鼠的血清中这些miRNAs表达上调。这些结果提示促进脂质积累和胰岛素抵抗的信号可能通过脂肪细胞的分泌miRNAs从胰岛素抵抗的脂肪细胞向新形成的脂肪细胞传播。肥胖患者的多种脂肪组织衍生的循环miRNAs(通过含脂肪特异性蛋白FABP4的细胞外颗粒的亲和纯化鉴定)在减肥手术一年后发生了显著变化。估计这些miRNAs可靶向WNT/β-catenin和胰岛素信号通路的成分。减肥手术后差异表达的miRNAs中, let-7a和miR-16 的靶标涉及胰岛素受体信号传导,并且这些miRNAs的水平与支链氨基酸(BCAA)的水平相关,表明它们可能与全身胰岛素抵抗相关。
胰岛细胞不仅可以通过分泌胰岛素和胰高血糖素来控制代谢,还可以通过分泌miRNAs来控制代谢。 初级胰岛细胞和β细胞来源的MIN6细胞在收到胰岛素分泌刺激时可释放特定的miRNAs。例如,与瘦组相比,肥胖ob/ob小鼠的血清、胰岛、肝脏和骨骼肌中 miR-223 表达上调。但其前体pri-miR-223仅在胰岛中升高,这表明其他组织中成熟miR-223水平升高来源与胰岛。miR-223已被证明能与 Glut4 mRNA的3' UTR结合,下调脂肪组织中的GLUT4( 葡萄糖的代谢取决于细胞对葡萄糖的摄取,然而,葡萄糖无法自由通过细胞膜脂质双层结构进入细胞,细胞对葡萄糖的摄入需要借助细胞膜上的葡萄糖转运蛋白(glucose transporters)简称葡萄糖转运体(GLUT)的转运功能才能得以实现。GLUT4就是其中的一种形式 ),上调心肌细胞的GLUT4表达。
miR-155、miR-142-3p和miR-142-5p 可能从T淋巴细胞来源的EVs转移到β细胞,导致炎症通路、细胞凋亡的激活和胰岛素缺乏性糖尿病的发生。
人单核细胞在促炎刺激后分泌的EVs具有高水平的 miR-150 。用这些EVs孵育微血管内皮细胞可下调miR-150靶基因c-Myb,这是一种参与内皮细胞迁移的转录因子。miR-150在体外过表达可诱导内皮细胞迁移,这种作用可通过动脉粥样硬化患者(miR-150水平上调)血浆中的EVs孵育来模拟。来自血管平滑肌细胞的EVs已被证明能够促进 miR-155 向内皮细胞的转移,通过降低紧密连接蛋白的水平来影响内皮屏障的完整性。暴露于氧化的低密度脂蛋白(LDL)的内皮细胞分泌的EVs高表达miR-155,miR-155可以将巨噬细胞的极化从M2样表型转移到促炎性M1样表型。血清和心脏中 miR-126 水平的变化被认为通过影响MCP-1和VCAM-1的表达而在心功能障碍中发挥作用。这些过程改变内皮功能,促进动脉粥样硬化。
越来越多的证据表明,循环EVs可能穿过室管膜层和血脑屏障(BBB)作用于中枢神经系统,从而发挥组织间通讯的作用。老龄大鼠鼻腔给药含 miR-219 的血清EVs可增加中枢神经系统的髓磷脂含量。改变血脑屏障(BBB)通透性的神经退行性疾病可以促进大脑循环miRNAs与血液循环miRNAs的交换。也有证据表明 EVs可以通过胞吞机制穿过血脑屏障 。许多细胞外miRNAs被认为是神经退行性疾病的疾病生物标志物,尽管它们在这些疾病的病理生理学中的作用尚不确定。 衰老会影响下丘脑干细胞分泌EVs miRNAs,而脑室内注射下丘脑干细胞分泌产生的EVs能够延缓下丘脑衰老。(汤老师的Nature文章) 含有miRNAs的EVs也涉及神经元、星形胶质细胞、小胶质细胞和内皮细胞之间的相互作用。2018年,Huang等人发现脑损伤后小胶质细胞EVs 中miR-124水平升高,观察到这个miRNA可以转移到神经元中发挥抑制神经元炎症和促进神经元突触生长的作用。
尽管这个领域还很年轻,但细胞外miRNAs作为细胞间通讯的生理机制的概念却令人兴奋并受到关注,使用细胞外miRNAs更好地对疾病分期以及治疗的前景也是如此。目前,开发合适的工具和标准化的方法来评估miRNAs的运输和交付是该领域的瓶颈,但是在未来几年可能被克服。克服这些障碍将把这一领域带入一个新的高度:特定的细胞外miRNAs可被视为不同生理和病理生理状况的生物标志物,而外泌体或其他EVs中的miRNAs可被用于以一种特定而有效的方式治疗疾病。
感觉这篇综述的质量不如我写的上一篇 ChemicalReviews综述 ,那篇更全面,并且对某些方面描述也更具体。不过这篇也可以学到少量那篇综述没涵盖到的知识点。
原文链接: Cell Metabolism 30, October 1, 2019. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. IF: 22.415
如果你关注了我,希望你与我一起学习,一起成长!❤
关键词:脂肪细胞外泌体和糖尿病认知