1 孟德尔第一定律----分离律 孟德尔以豌豆为材料,挑选七对相对应的性状 ,年复一年地进行种植和杂交实验,分析这七对性状从上代至下代的遗传规律。经过八年反复试验,孟德尔总结出两条定律。 孟德尔第一定律--分离律。 孟德尔假设存在着控制遗传性状的因子,双倍体植株的细胞含有成对因子。 每对性状因子都有显性因子(用大写字母代表,如:A)和隐性因子(用小写字母代表,如:a)之分。只有一对遗传因子均为隐性因子情况下(可写为aa),才表现出隐性因子所代表的性状。如:白花,一对遗传因子均为显性因子(可写为AA),或一对遗传因子含一个显性因子一个隐性因子(可写为Aa),均表现出显性因子所代表的性状,如:紫花。这样,人们将生物体表现出来的性状称为表型,而将它的基因组成称为基因型。例如,紫花是表型,基因型为AA的植株和基因型为Aa的植株都具有紫花,这称为表型。 在从在双倍体植株产生单倍体的卵细胞或花粉细胞时,成对因子就会分离开来,每个单倍体的卵细胞或花粉细胞得到一个因子。经过授粉受精后,产生的种子从父本得到一个遗传因子,从母本得到一个遗传因子,遗传因子均成对存在。 孟德尔第一定律认为,遗传因子在形成单倍体生殖细胞时分离,在受精时随机组合,这一规律被人们称之为分离律。 2.孟德尔第二定律--自由组合律 一个个体的两对性状在遗传中是否相互影响?有什么样的遗传规律呢? 孟德尔仍通过遗传豌豆实验,提出人称为孟德尔第二规律的自由组合律。这个定律在肯定各对性状均服从上述分离律的基础上,提出控制两对性状的遗传因子在遗传中彼此是独立的,因此,控制两对性状的显性遗传因子和隐性遗传因子,在遗传中表现出自由组合的特点。 3. 孟德尔学说的重要意义 孟德尔的遗传定律明确地提出了遗传因子的概念,并且强调控制不同性状的遗传因子的独立性,彼此间并不“融合”或“稀释”,这些提法或概念一改在他以前对生物体性状遗传捉摸不定,难以把握的状态。 孟德尔认为:遗传因子成对存在,只是在形成单倍体生殖细胞时才分离开来,这些提法为后来人们寻找和确定遗传因子提供了有益的启示。 孟德尔所提出的实验方法:选定相应性状,进行一系列杂交实验,再对后代的性状表现进行分析,这一套实验方法被后来的遗传学家连续使用约半个世纪,被证明是科学有效的研究遗传的方法。运用这套方法,人们在模型实验材料(豌豆,果蝇,粗糙链孢霉等)中确定了成百上千个遗传因子--基因。
独立遗传的表现特征:如两对相对性状表现独立遗传且无互作,那么将两对具有相对性状差异的纯合亲本进行杂交,其F1表现其亲本的显性性状,F1自交F2产生四种类型:亲本型:重组型:重组型:亲本型,其比例分别为9:3:3:1。如将F1与双隐性亲本测交,其测交后代的四种类型比例应为1:1:1:1。如为n对独立基因,则F2表现型比例为(3:1)n的展开。
独立遗传的细胞学基础是:控制两对或n对性状的两对或n对等位基因分别位于不同的同源染色体上,在减数分裂形成配子时,每对同源染色体上的每一对等位基因发生分离,而位于非同源染色体上的基因之间可以自由组合。
连锁遗传的表现特征:如两对相对性状表现不完全连锁,那么将两对具有相对性状差异的纯合亲本进行杂交,其F1表现其亲本的显性性状,F1自交F2产生四种类型:亲本型、重组型、重组型、亲本型,但其比例不符合9:3:3:1,而是亲本型组合的实际数多于该比例的理论数,重组型组合的实际数少于理论数。如将F1与双隐性亲本测交,其测交后代形成的四种配子的比例也不符合1:1:1:1,而是两种亲型配子多,且数目大致相等,两种重组型配子少,且数目也大致相等。
连锁遗传的细胞学基础是:控制两对相对性状的两对等位基因位于同一同源染色体上形成两个非等位基因,位于同一同源染色体上的两个非等位基因在减数分裂形成配子的过程中,各对同源染色体中非姐妹染色单体的对应区段间会发生交换,由于发生交换而引起同源染色体非等位基因间的重组,从而打破原有的连锁关系,出现新的重组类型。由于F1植株的小孢母细胞数和大孢母细胞数是大量的,通常是一部分孢母细胞内,一对同源染色体之间的交换发生在某两对连锁基因相连区段内;而另一部分孢母细胞内该两对连锁基因相连区段内不发生交换。由于后者产生的配子全是亲本型的,前者产生的配子一半是亲型,一半是重组型,所以就整个F1植株而言,重组型的配子数就自然少于1:1:1:1的理论数了。
孟德尔第一遗传法则和第二法则
1。基因的分离定律。
杂合体中决定某一性状的成对遗传因子,在减数分裂过程中,彼此分离,互不干扰,使得配子中只具有成对遗传因子中的一个,从而产生数目相等的、两种类型的配子,且独立地遗传给后代,这就是孟德尔的分离规律。
2。基因的自由组合定律。
具有两对(或更多对)相对性状的亲本进行杂交,在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这就是自由组合规律的实质。也就是说,一对等位基因与另一对等位基因的分离与组合互不干扰,各自独立地分配到配子中。
第三,连锁交换定律
连锁交换定律内容:位于同源染色体上的非等位基因在形成配子时,多数随所在染色体一起遗传,若发生非姊妹染色单体之间的交换可产生少量的重组型配子。
细胞学基础,问题太宽泛,具体指什么
1 孟德尔第一定律----分离律孟德尔以豌豆为材料,挑选七对相对应的性状 ,年复一年地进行种植和杂交实验,分析这七对性状从上代至下代的遗传规律.经过八年反复试验,孟德尔总结出两条定律.孟德尔第一定律--分离律.孟德...
绝大多数细胞都非常微小,超出人的视力极限。观察细胞必须用显微镜。但是,在认识到细胞的客观存在之前,还无法知道在显微镜下观察到的对象就是细胞。所以 1677年A.van列文虎克用自己制造的简单显微镜观察到动物的“精虫”时,并不知道这是一个细胞。细胞(cell,源于拉丁文cella原意为空隙、小室)一词是1667年R.胡克在观察软木塞的切片时看到软木中含有一个个小室而以之命名的。其实这些小室并不是活的结构,而是细胞壁所构成的空隙,但细胞这个名词就此被沿用下来。在细胞学的启蒙时期,用简单显微镜虽然也观察到许多细小的物体──例如细菌、纤毛虫等,但目的主要是观察一些发育现象,例如蝴蝶的变态,精子和卵子的结构等。由于受当时的显微镜的局限,观察不够精确,加上宗教信念的束缚,这些观察结
图册细胞学(16张)
果反而支持了先成论的教条。有的人声称在精子中看到了具体而微的“小人”,认为由此发展成将来的个体──唯精论者;也有的人认为“小人”存在于卵子中──唯卵论者。先成论的影响持续了100多年,阻碍了人们在R.胡克的基础上对细胞进一步了解,直到1827年К.M.贝尔发现哺乳类的卵子,才开始对细胞本身进行认真的观察。在这前后研制出的无色差物镜,引进洋红(carmine)和苏木精作为使细胞核着色的染料以及切片机和切片技术的初创,都为对细胞进行更精细的观察创造了有利条件。
遗传发生在有性生殖过程中,这个以细胞减数分裂为基础,因为减数分裂才能形成成熟的生殖细胞。
关键词:遗传的细胞学基础