2022神经干细胞最新进展(2022神经干细胞最新进展如何)
本文目录一览:
- 1、严格的谱系追踪是暨大活细胞抗衰神经细胞再生研究的关键
- 2、神经干细胞移植预计今年能在中国上市吗?
- 3、干细胞治疗,尚需突破“最后一公里”
- 4、何为神经干细胞
- 5、sb623现在成熟吗
严格的谱系追踪是神经细胞再生研究的关键
UT西南干细胞科学家发现严格的谱系追踪是研究神经细胞再生的关键。他苹果干细胞美容靠谱么们的结果发表在近期的《细胞》杂志上,研究结果表明这一追踪在这一领域远远不是例行公事,并建议以前的研究报告“惊人的”再生结果必须重新审查。
谱系跟踪,属于发育生物学,指用于绘制生物体中某一特定细胞的后代或后代的测试。
谱系追踪也是干细胞生物学领域的核心,因此得知这种测试被省略的频率是令人惊讶的,作者在新发表的研究中写道。相应的两位作者是张春丽(音译)博士和王雷雷博士。
在使用一系列协议进行了数十项实验之后,研究人员确定了哪种特定的谱系追踪测试看起来最可靠、最可靠--所谓的金本位测试。张博士说:“我们采用了目前可用的谱系追踪分析方法,但没有开发出新的检测方法。”科学家们还发现了不太可能提供精确结果的测试。
这项研究的结论是列出了可靠的谱系追踪试验,并强烈建议在所有从事神经细胞再生研究的实验室中使用这些检测方法。她说:“我们列出的方法在实验室建立起来很简单,我们认为应该始终使用这些方法。”
张博士在UT西南医学中心获得遗传学和发展博士学位,在那里从事肌肉发育和心脏病方面的工作。他哪种蔬菜富含维生素a进行了博士后研究,在神经干细胞霍华德休斯医学研究所担任研究员。
在UT西南大学,张博士的实验室报告了神经干细胞生物学方面的一些进展,例如再生损伤后小鼠的大脑和脊髓。科学家他的实验室在活动物细胞命运重编程方面的工作被认为是2014年科学上的重大进步之一。2009年,他获得了著名的国立卫生研究院主任新创新者奖。
使用严谨世系追踪追踪,王博士和张博士的团队在2018年报告说,当他们试图将一种被称为胶质细胞的脑细胞转化为神经元时,他们反而将成熟的抑制神经元重新编程成一种不同类型的神经元,从而产生在帕金森病中丢失的神经递质。他们的研究表明,成年后大脑的神经元比以前想象的更有延展性。
今年早些时候,他们在细胞干细胞神经胶质的潜在神经源性潜能细胞可以通过杠杆作用产生新的神经元,并导致脊髓损伤后功能的恢复。
更多内容:Lei-Lei Wang et al, Revisiting astrocyte to neuron conversion with lineage tracing in vivo, Cell (2021). DOI: 10.1016/j.cell.2021.09.005
神经干细胞移植预计今年能在中国上市吗?
已经上市了。
神经干细胞移植是将神经干细胞(neural stem cells)移植到宿主体内,使神经干细胞向神经系统病变部位趋行、聚集,并存活、增殖、分化为神经元和/或胶质细胞,从而促进宿主缺失功能的部分恢复的一种技术。近年来,神经干细胞研究成为治疗神经退行性疾病和中枢神经系统损伤的热点。神经干细胞移植在临床应用中有广阔的前景,对它的研究一直是近年来的热点。
一、治疗特点
胚胎性神经干细胞可自动发生分化,具有无限增殖能力,移植至患者体内有致瘤的可能,同时胚胎性神经干细胞还有可能引起免疫排斥反应,所以胚胎神经干细胞尚不能应用于临床。来源于细胞系的神经干细胞因为在培养过程中有基因的掺入,并需经过长期的培养,有可能发生某些生物学特征的改变,甚至发生恶性转变,因此,来源于细胞系的神经干细胞多应用于动物实验。
二、移植途径
20世纪80年代中期开始,国外学者即将干细胞移植技术应用于临床。临床应用较多的是成人帕金森氏病、脑中风、脑梗塞、亨廷顿氏病、老年性痴呆及脑外伤。移植后部分病人出现了神经运动功能的改善,但也有部分病人病情无明显变化。考虑患者多为老年人,脑内环境较差,不利于神经干细胞的存活及分化。移植的长期疗效仍在进一步观察中。在小儿神经干细胞移植方面,北京海军总医院儿科自2005年5月成功进行了世界首例新生儿缺氧缺血性脑病、早期脑瘫患儿神经干细胞移植,之后又先后对各类型智力障碍、小儿脑瘫、新生儿缺氧缺血性脑病、新生儿核黄疸、颅内出血、Rett综合征、孤独症、21-三体综合征、脊肌萎缩症、线粒体脑肌病、先天或遗传代谢性脑病等进行了神经干细胞移植,取得了较好的临床疗效,半数以上患儿智力和运动能力得到不同程度改善,小婴儿效果尤其显著,无一例出现倒退及发生严重并发症。其中还有14名视觉严重障碍患儿视觉功能明显恢复。
三、移植途径
依据神经干细胞能够向病变神经系统部位趋行、聚集的生物学特性,动物实验及临床应用中所使用的干细胞移植途径主要包括局部注射移植、经脑脊液注射移植、经血液循环注射移植。下面就各种移植途径的应用方法和主要特点概述如下。
局部注射移植
1、立体定向脑内注射移植是动物实验和临床研究采用最多的干细胞移植方法。该技术是应用CT/MRI扫描定位后,图像象输入计算机,利用计算机规划移植靶点、手术路径,局部麻醉后,颅骨钻孔,插入探针,微量泵泵入神经干细胞。立体定向脑内注射移植手术具有定位准确,操作时间短,手术创伤小,患者在局麻下可承受该手术,利于术者检查患者配合情况,及时观察治疗反应的优点。该方法适合于病灶比较局限的疾病如脑出血后遗症、脑外伤后遗症、局灶性脑梗塞等,也适合具有集中神经功能核团支配的神经功能退行性疾病如帕金森症、阿尔茨海默病等。该方法是可以把干细胞全部集中到病灶及其周边发挥治疗作用,神经功能改善迅速、直接。但缺点是将神经干细胞直接注射于脑损伤区,脑内神经干细胞移植的成功率较低,这是因为脑损伤部位是一处不良的局部微环境区域,植入的神经干细胞有可能被激活的小胶质细胞和巨噬细胞所清除。经脑内移植尚有容积占位效应,致使神经干细胞移植量有限,这也是导致移植成功率降低的因素之一。此外,经脑内移植还可导致局部神经干细胞移过度聚集,不利于神经干细胞移的分化。头部穿刺手术,虽然创伤较小,但仍存在穿刺出血的风险,许多患者不愿意接受。
2、脊髓局部注射移植是治疗脊髓损伤的动物实验和临床研究最多采用的干细胞移植方法。该技术主要是在脊髓损伤的节段进行手术,依次切开皮肤、肌肉、韧带,咬除受伤节段的部分椎板,剪开硬脊膜然后在受伤脊髓节段上下两端注射干细胞。该方法的优点是移植的细胞分布在损伤脊髓两端发挥作用,同时手术可以起到减压的作用,促进部分脊髓功能的恢复。但缺点是创伤大,存在出血的风险,此外手术本身对脊髓是一次新的损伤有可能加重神经功能的缺失。
经脑脊液途径移植
1、腰椎穿刺蛛网膜下腔注射移植
该方法是另一种较多采用的移植方法。该方法是利用腰椎穿刺技术,于腰椎3-5椎间隙,置入穿刺针达到蛛网膜下腔,注入神经干细胞。其优点是移植的细胞可以顺着脑脊液的循环途径流遍整个大脑和脊髓,可在宿主蛛网膜下腔中保持贴附、增殖和分化的能力,无论哪里有病灶,细胞都可以到达,适合于病变较为广泛的神经功能疾病的治疗,例如脑炎后遗症、脑发育不良、多发性脑梗塞等疾病。且该方法创伤很小,每次操作只需要十多分钟,病人始终处于清醒状态。该方法的缺点是移植的干细胞被分散到整个大脑和脊髓,干细胞迁移、趋行到什么部位难以控制,治疗效果没有定向脑内注射明确,同时干细胞需要顺着脑脊液循环至大脑,路径较长,且需通过脑脊液-脑屏障,细胞损失较多。此外干细胞直接进入脑脊液中,为环境完全不同于体外培养的环境,干细胞存活的数量仍存在疑问。
2、脑室穿刺注射移植
有部分动物实验和临床研究采取脑室穿刺注射移植的方法。该方法是给予患者侧脑室穿刺后,经穿刺针注射神经干细胞。动物实验研究证明通过脑脊液途径移植神经的干细胞可以特异性的迁移至脑损伤区域,对临床神经干细胞移植治疗方案的确定具有积极的意义。该方法的优点是脑室穿刺时干细胞可以直接到达脑室系统,循环至整个神经系统,移植点位于高位,路径较短,干细胞损失较少。植入细胞可远离损伤环境,同时避免损伤区的不良微环境影响移植细胞的成活,从而提高植入细胞的存活率,避免经脑内移植时的容积占位效应,增加植入细胞的数量,脑室内环境也为植入的NSCs提供了良好的迁移发育和定向分化的场所,有利于脑室植入细胞在内源性NSCs的迁移途径引导下,广泛快速地到达脑内损伤区。但此方法缺点在于,因为要经过脑脊液循环到达病灶区,需要移植的细胞数量要增加,此外脑室穿刺创伤较腰椎穿刺大,有穿刺出血的风险。脑室穿刺细胞移植与腰椎穿刺细胞移植的治疗原理和效果应该是基本相同,如果此移植途径可行,在临床上可以直接通过腰椎穿刺蛛网膜下腔注射进行细胞移植。
3、枕大池穿刺移植
该方法是动物实验中较多采用的移植方法,主要是从后枕部穿刺到枕大池注入干细胞。优点基本与其他利用脑脊液途径移植的方法相同,动物实验中主要考虑腰椎穿刺和脑室穿刺的难度较大,该方法操作较为简单。但该方法不适合于临床应用也没有临床报道,主要因为后枕部穿刺的手术风险过大,可能造成脑干的损伤,危及生命。
血液循环途径移植
1、静脉内注射移植
静脉内注射移植的方法仅见于动物实验的文献报道,个别医院也在应用该方法,但尚未正式报道。该方法是使用静脉穿刺的方法,将神经干细胞滴入血液循环,干细胞通过血液循环到达神经系统,透过血脑屏障到达脑组织发挥作用。其优点是创伤小、容易被患者所接受,经静脉移植避免损伤正常脑组织,且可以通过反复多次移植来弥补到达病灶区神经干细胞移少之不足。如Jeong等经大鼠尾静脉植入神经干细胞移,证实进入脑内的神经干细胞移有10%成功分化为神经元,并与周围正常神经元建立了突触联系。但经静脉进行神经干细胞移移植的不利因素在于,从外周静脉进入脑内需经长时迁移,最后进入脑内的细胞数量十分有限,从而导致移植成功率不高。从理论上来讲,大量的移植细胞没有进入所希望治疗的病灶区域,而是在血液循环中消耗掉了,加大移植细胞的数量的话,理论上可能有足够数量的干细胞进入病灶区域发挥作用,但同时会使治疗成本升高。
2、动脉内注射移植
动脉内注射移植的原理基本与静脉内注射移植相同,主要是部分学者考虑通过直接将干细胞在供脑动脉内注射,可以减少干细胞在血液循环中的损失,提高干细胞的利用率。多采用颈内动脉穿刺的方法移植干细胞,这样可以使移植的干细胞集中流到脑组织内部,减少细胞耗损。该方法缺点是有可能使老年患者动脉壁上的血栓脱落形成新的脑血栓,以及可能形成夹层动脉瘤。
以上几种干细胞移植途径各有优缺点,均为干细胞的动物实验及临床研究提供了移植方法。笔者认为很难评价各种方法的优劣,而应该在各种方法的完善上进一步进行研究,掌握每种方法的适应证,必要时可以两种或两种以上方法联合应用,以达到最好的治疗效果。
干细胞治疗,尚需突破“最后一公里”
遵义医科大学附属医院医药生物技术研究所 肖建辉教授
生命起源于细胞,而干细胞是生命体不同类型细胞的起源细胞,素有“万能细胞”之称。生命体的组织器官均由干细胞生长、分化发育而来。生命的发生、发展过程均离不开干细胞,生命体的生长发育需要干细胞参与,生命体的衰老死亡也与干细胞的衰老、枯竭有关。因此,干细胞是揭示生命本质与规律、探讨疾病发生机制及药物筛选的最好研究模型。
干细胞主要来源于胚胎、胎盘及其附属物和成体组织。干细胞按其分化潜能可分为全能干细胞 ﻪﻪ、多能干细胞和专能干细胞;按其发育阶段可分为胚胎干细胞和成体干细胞,而成体干细胞可根据其组织来源分为造血干细胞、神经干细胞、骨髓间充质干细胞、肠上皮干细胞、胎盘干细胞、脐带干细胞、羊膜干细胞等。另外还有诱导性多能干细胞 ﻪﻪ(iPS),即通过病毒载体将特定干细胞转录因子导入终末分化体细胞发生细胞重编程,或直接用化学小分子诱导体细胞重编程,转变成iPS。
基于干细胞的自我更新及定向分化的独有生物学特性和功能,具有传统医疗所不具备的疗效,可直接用于替代病损组织细胞,起到修复重建的作用,且无二次伤害和副作用。近十年来,注册的干细胞临床研究多达数千项,覆盖140余种疾病,治疗了数万例患者。2020年以来,干细胞治疗新冠肺炎的临床研究开展的如火如荼,已成为不可或缺的创新疗法。
在干细胞领域,我国自“十一五”起做了重要战略部署。一方面,为推动我国干细胞产业的发展,在“十三五”开局之年,“干细胞及转化研究”被列入国家重点研发计划的首个试点专项,仅2016年至2018年期间拨款20亿人民币,使得我国干细胞基础与临床转化研究跨上一个前所未有的高度。新近, 科技 部为落实“十四五”期间国家 科技 创新有关部署,持续加大干细胞领域研发投入,2021年干细胞重点研发计划国拨经费达伍亿人民币。
另一方面,我国也积极从监管政策着手,制定出台了《干细胞临床研究管理办法》《干细胞制剂质量控制及临床前研究指导原则(试行)》《人源性干细胞及其衍生细胞治疗产品临床试验技术指导原则》等相关政策,明确“干细胞临床研究有限放开”、“细胞制品按药品管理”等举措,为推动我国干细胞医疗及干细胞产业快速 健康 发展保驾护航。目前,我国的干细胞领域研发的综合实力已跃居世界第二位,仅次于美国,在干细胞自我更新与定向分化机制、干细胞与组织器官发育调控、干细胞抗衰老等领域取得许多领跑国际的标志性成果。
间充质干细胞(MSC)是成体干细胞中重要的类群,具有归巢性、定向分化、免疫调节及组织修复再生能力强等优良的功能特性,并有低免疫原性、无致瘤性等安全特性。MSC规避了胚胎干细胞的强致瘤性和伦理问题,也不存在iPS的遗传风险和致瘤风险,是干细胞与再生医学领域最有潜力的细胞资源。而且从全球主要临床试验注册中心统计的数据看,MSC的确也是世界范围内临床应用研究的热点。
MSC来源于发育早期的中胚层和外胚层,具有多向分化潜能,可分化为骨、软骨、肌肉、神经、肝、心肌等多种细胞类型。MSC主要分布在结蹄组织、器官基质及其附属物中,譬如骨髓、脂肪、肌肉、胎盘、脐带、羊膜等组织。
MSC的应用方式多样,既可直接用于细胞移植治疗,亦可作为靶细胞用于基因治疗,或用作组织工程种子细胞。而且,还可取其细胞组分,如外泌体具有同等甚至更强的治疗效果。MSC治疗的疾病谱广,其在移植物抗宿主病、自身免疫性疾病、心脑血管病、肾病、肝病、骨病、自闭症及神经退行性疾病等的治疗方面有巨大临床应用价值。
2012年,世界上首个干细胞治疗药物prochymal获加拿大卫生部批准上市,用于治疗移植物抗宿主病,这是一种来源骨髓的MSC,但其在三期临床时宣布失败。目前,全球上市的干细胞产品(大多数也是MSC产品)有十余种,但至今尚未见大规模临床应用的成功案例。
面对MSC临床试验结果的不稳定及不断累积的失败案例,提示MSC临床转化道阻且长,这最关键的环节究竟在哪里?
我们必须意识到MSC等干细胞不同于传统的化学药物,首先MSC等干细胞最明显的特点是具有生命,受环境影响大,不可控因素多,均一性差,这将直接影响到MSC质量的稳定性、可控性。通常,为获取足够治疗数量的MSC,体外扩增是不可或缺的环节,而体外扩增过程存在易老化、异质性和多样性等影响细胞质量、限制临床应用重要瓶颈问题,是干细胞与再生医学领域前沿亟待突破的难点;其次,MSC等干细胞移植后的分布代谢、作用方式和途径有别于传统化学药物,归巢、存活、定植和更新能力直接影响到疗效。因此,细胞质量和治疗方案直接关系到MSC的疗效,其中细胞质量是困扰MSC临床转化的源头性、根本性和基础性的科学问题。
当前,围绕干细胞的细胞质量和治疗方案,国内外干细胞研究团队正在积极 探索 新方法新策略。我们团队以围产期人羊膜MSC为研究对象,构建干细胞衰老模型,从化学遗传学和免疫学视角,清除衰老细胞,甚至逆转衰老细胞,促进人羊膜MSC增殖能力,并调控维持乃至增进其自我更新、免疫调节、多向分化和迁移归巢等生物学特性,实现人羊膜MSC赋能的新途径。同时也创建了鸡尾法移植治疗糖尿病、骨性关节炎、骨质疏松等免疫性和退行性疾病模型的新策略。
总之,干细胞临床应用前景广阔,有望惠及广大难治性疾病患者。但是,干细胞治疗技术真正成为医疗行业颠覆性新技术,尚需突破实验室到病房“最后一公里”。
何为神经干细胞
一、神经系统发育与神经干细胞
神经系统的发育起始于胚胎早期的神经管和神经嵴,其中央管在发育的终末形成脑室系统和脊髓的中央管,管腔内面被覆的细胞为神经上皮(neuroepithelium),具有活跃的增殖和分化能力,在胚胎早期此区域称为脑室/脑室下区(ventricular/subventricular zone,VZ/SVZ),而在成年后则称为室管膜/室管膜下区(ependymal/subepen-dymal zone,EZ/SEZ),在神经发生(neurogenesis)过程中起着举足轻重的作用。
有关神经元和神经胶质细胞的起源,长期以来一直存在着争议,目前被大多数神经生物学家接受的是“一元论”的发生机制,即神经元和胶质细胞来源于共同的干细胞。这种干细胞由胚胎早期室管膜上皮细胞产生并具有多向分化的潜能,因此被称为多潜能神经干细胞(multipotential neural stem cell),迄今为止,多潜能干细胞的概念仍不十分确切,因此命名也尚未统一,有的学者也称之为前体细胞(precursor cell)或祖细胞(progenitor cell),总之,代表具有下述特性的一类细胞:(1)可自我复制或更新(self-renew),产生与自己相同的子代细胞,维持稳定的细胞储备;(2)处于较原始的未分化状态,无相应成熟细胞的特异性标志;(3)具有多向分化的潜能,即演变成不同成熟细胞类型的能力。
Lendahl等通过实验证明中枢神经系统内多潜能干细胞或前体细胞在胞浆内表达一种被称为巢蛋白或巢素(nestin)特异性蛋白,现已证实其属于中间丝(intermediate filament)蛋白家族,只在多潜能的神经外胚层细胞表达,随着神经上皮的分化成熟逐渐消失,其功能现在尚未完全明确,可能与其它家族成员相似,同时具有结构和信息传递的功能;通过检测巢蛋白的表达即可确定多潜能干细胞的存在。另外,利用分子水平的细胞谱系追踪技术,通过脑室内注射表达荧光蛋白或b-半乳糖苷酶(LacZ)的逆转录病毒感染SVZ区处于分裂期的细胞,可以对干细胞的增殖、移行和分化过程进行监视。通过上述方法,目前已经证实在成年哺乳类动物中枢神经系统内至少有两个区域存在着具有增殖能力的细胞,即室下区和海马结构齿状回的颗粒细胞层下区(subgranular zone,SGZ)。这两个区域原始细胞的表型目前还不清楚。
二、神经干细胞的研究方法
1.体外研究 常规分离神经干细胞的方法是在活体动物脑内已经确定有细胞分裂的部位切取部分组织,在含有高浓度的致有丝分裂原的培养基中孵育,经过增殖后,诱导细胞向不同的子代细胞分化。分化的鉴定通过在单细胞形成子代克隆中,应用免疫细胞化学染色方法检测神经元、星形细胞、及少突胶质细胞所表达的特异性抗原。
定义一组体外培养的细胞为多潜能干细胞也存在着许多问题,其中最重要的是必须证明这些细胞具有向不同成熟细胞分化的能力。虽然现在完全可以应用特异性抗体标记神经元、星形细胞或少突胶质细胞,但是神经元的种类有数百种,若证明真正意义上的“多潜能”尚有很多的工作要做。
目前国外一些研究机构相继报道了建立干细胞系的工作,与原代培养相比,为体外观察和移植研究提供了较稳定的材料;但是应用病毒或v-myc等癌基因修饰的“永生化细胞”遗传特性改变并有继续突变的趋势,可能在移植后生成肿瘤或在分析正常基因对子代细胞分化方向时产生影响,因而其应用价值有待于进一步评价。
2.在体研究 神经元与神经胶质细胞分化的研究主要通过追踪干细胞分裂、分化后产生的细胞谱系构图(lineage
mapping)进而了解细胞发育间的“亲缘”关系。通常认为细胞发育是由其祖先和环境因素共同决定,即受细胞内外调节因素的共同调控。为进一步确定经体外培养鉴定的干细胞的分化潜能,将扩增后/或经基因修饰的干细胞移植到脑内进行观察,结果证明植入的细胞不仅可以在发育期脑和周围神经系统中广泛移行,而且向神经元和胶质细胞分化,甚至人胚胎来源的干细胞在植入成年大鼠脑内也可以分化成为神经元和胶质细胞;同时发现移植细胞分化方向似乎由其所处的局部环境而非内在的特性决定,胚胎来源的干细胞沿着宿主细胞移行并分化成为移植部位的特殊细胞类型,植入的细胞在正常发育的脑内对局部信号的适宜反应导致了这种“嵌合”现象,使其与宿主细胞很难区别。Rosario等将培养的干细胞植入基因突变致小脑前叶发育缺如的小鼠模型,发现这些细胞逐渐分化成颗粒细胞并形成小脑的内颗粒层;电子显微镜观察结果显示供体细胞分化而来的颗粒细胞与宿主苔藓纤维建立了突触联系。上述这种显著的可塑性并不局限在发育期脑内,从成年动物海马来源的干细胞也可以在植入海马后分化成为神经元和胶质细胞,与齿状回正常分化的细胞类型相似;更进一步,这些细胞在植入RMS(rostral migratory
stream)后还可以分化为嗅球神经元并具有合成酪氨酸羟化酶的能力,这种酶在正常海马细胞内是不能合成的;而在移植到成年动物正常情况下不产生神经元的部位,干细胞则不能生成神经元而是向胶质细胞分化。最令人惊讶的是Bjornson等报道从胚胎或成年小鼠脑内取得的细胞经标记后移植到放射损伤的宿主鼠体内,竟然分化为骨髓细胞、淋巴细胞以及其它原始的造血细胞,其结果提示神经干细胞的分化潜能不只局限于神经系统。在受损伤的发育期脑内,干细胞则向损伤部位移行并替代缺失的细胞。由此推测,植入的细胞在分裂增殖的同时,可能“辨别”其所处的环境,但是什么因素始动分化并决定其分化方向还有待于进一步探索,其中必然交杂着内外因素的复杂作用,供体细胞本身所具有的内在分化程序、局部环境中的神经营养因子、细胞外基质、黏附分子及细胞间的相互作用均可能参与其中。
3.影响神经干细胞增殖分化的因子 在多细胞有机体内,每一个细胞的活动均受到极其复杂的内、外环境信号之间相互作用的调控,其中生长因子可能是涉及此过程中的主要信号分子。中枢神经系统中的各种因子对发育期细胞的存活、增殖、移行和分化,成年时期功能的维持,损伤时细胞的可塑性改变,都有着非常重要的影响。其中研究中应用最多的生长因子是EGF和bFGF,已知EGF是星形胶质细胞的致有丝分裂原,在体外细胞培养中也可以促进神经存活和突起生长,Weiss等证明其对培养的干细胞有明显的刺激增殖作用,其子代细胞可向神经元、星形细胞和少突胶质细胞分化。bFGF据报道也具有相同的作用,而且在低浓度下尚有诱导干细胞向神经元分化的作用。当EGF和bFGF注射入成年鼠脑室内,EGF可强烈刺激SVZ细胞增殖,对SGZ的细胞则无作用;bFGF的作用相对较弱;但是新生鼠通过注射bFGF则可导致脑内神经元的数目增多。已经检测具有相类似作用的还有神经生长因子、血小板源性生长因子、转化生长因子、神经营养因子等,但是它们的作用机制仍不清楚。
三、神经干细胞的应用前景
1.细胞移植 以往脑内移植或神经组织移植研究进展缓慢,主要受到胚胎脑组织的来源、数量以及社会法律和伦理等方面的限制。神经干细胞的存在、分离和培养成功,尤其是神经干细胞系的建立可以无限地提供神经元和胶质细胞,解决了胎脑移植数量不足的问题,同时避免了伦理学方面的争论,为损伤后进行替代治疗提供了充足的材料。研究表明,干细胞不仅有很强的增殖能力,而且尚有潜在的迁移能力,这一点为治疗脑内因代谢障碍而引起的广泛细胞受损提供了理论依据,借助于它们的迁移能力,可以避免多点移植带来的附加损伤。另外,神经干细胞移植也为研究神经系统发育及可塑性的实验研究提供了观察手段,前文提及细胞因子参与调控神经元增殖和分化,通过移植的手段对这些因素的具体作用形式和机制进行探索,为进一步临床应用提供了理论基础。
2.基因治疗 目前诱导干细胞向具有合成某些特异性递质能力的神经元分化尚未找到成熟的方法,利用基因工程修饰体外培养的干细胞是这一领域的又一重大进展;另外已经发现许多细胞因子可以调节发育期甚至成熟神经系统的可塑性和结构的完整性,将编码这些递质或因子的基因导入干细胞,移植后可以在局部表达,同时达到细胞替代和基因治疗的作用。
3.自体干细胞分化诱导 移植免疫至今为止仍是器官或组织移植的首要问题。前文提到已经证明成年动物或人脑内、脊髓内存在着具有多向分化潜能的干细胞,那么使人们很容易想到通过自体干细胞诱导来完成损伤的修复。中枢神经系统损伤后,首先反应的是胶质细胞,在某些因子的作用下快速分裂增殖,形成胶质瘢。其实在这个过程中也有干细胞的参与,可不幸的是大多数干细胞增殖后分化为胶质细胞,什么机制控制着细胞的分化决定,确切机制尚未明了。一旦这个机制被发现,无疑对中枢神经系统损伤修复来讲是一个重大的飞跃,因为它不仅可以避免移植造成的不必要损伤,更重要的是可以避免排斥反应。体外实验已经证明某些因素的诱导分化作用,但是应用到临床尚有一段距离,可我们仍从前述成功的探索中看到希望并相信在这方面的突破即将到来。
sb623现在成熟吗
题主是否想询问“sb6232022年11月17日成熟吗”?成熟。sb623是一种冷藏的间质干细胞,截止2022年11月17日开发项目已经非常成熟了,在脑梗塞方面的治疗,主要是人源神经干细胞。
相关文章
发表评论
评论列表
- 这篇文章还没有收到评论,赶紧来抢沙发吧~