莱利赛百科

您现在的位置是:首页 > 干细胞知识 > 正文

干细胞知识

人体骨骼可以产生多少干细胞(人体内的骨骼有多少块)

max2023-04-17干细胞知识155

本文目录一览:

人体内参与循环的造血干细胞有多少?

骨髓造血干细胞一般处于休眠状态,只有出现造血压力的时候才会被激活,产生自我更新的能力

人体中的造血干细胞含量与人的体重等因素有关,成察渗年人一般造血干细胞在体内约为3千克,骨髓是造血干细胞的来源。骨髓造血干细胞分化的频率很此盯低,但是科学家们认败扒脊为骨髓造血干细胞库常数星期更新一次

骨骼方面的小知识

1.人体骨骼的分布常识

人体骨骼共颤竖有206块。

颅骨29块

脑颅骨 14块 (额骨1块、枕骨1块、蝶骨1块、筛骨1块、顶骨2块、颞骨2块和听小骨6块)

面颅骨 15块

椎骨 26块(颈椎 7节、胸椎 12节、腰椎 5节、骶骨 1节、尾骨 1节)

胸骨 1块 (胸骨柄、胸骨体、剑突)

肋骨 12对

四肢骨126块:

上肢骨 64块 上肢带骨 :锁骨、肩胛骨 4块。自由上肢骨:(肱骨 2块、尺团辩骨 2块、桡骨 2块、手骨 54块【指骨28、掌骨10、腕骨16】)

下肢骨62块 下肢带骨 :髋骨 2块。 自由下肢骨:(股骨 2块、髌骨 2块、胫骨 2块、腓骨 2块、足骨 54块【跗骨28、跖骨10、趾骨16】)

2.关于骨骼的知识

一具标准成年人的骨骼包括下面206块:(标示黑体的数字与右边图示相对照)

颅 (22):

头盖骨:

1. 额骨

2. 顶骨 (2)

3. 颞骨 (2)

4. 枕骨

蝶骨

筛骨

面骨:

5. 颧骨 (2)

6. 上颌骨

7. 下颌骨

9. 鼻骨 (2)

腭骨 (2)

泪塌洞缺骨 (2)

犁骨

下鼻甲 (2)

耳骨(在 中耳部) (6):

锤骨 (2)

砧骨 (2)

镫骨 (2)

喉部骨骼 (1):

舌骨

肩部骨骼 (4):

25. 锁骨 (2)

29. 肩胛骨 (2)

胸部骨骼 (25):

10. 胸骨

28. 肋骨 (2 x 12)

脊椎(24):

8. 颈椎 (7) incl. atlas axis

14. 腰椎 (5)

胸椎 (12)

臂部骨骼 (6):

11. 肱骨 (2)

26. 肱骨骨节

12. 尺骨 (2)

13. 桡骨 (2)

27. 桡骨头

手骨 (54):

腕骨:

手舟骨 (2)

月骨 (2)

三角骨 (2)

豌豆骨 (2)

大多角骨 (2)

小多角骨 (2)

头状骨 (2)

钩骨 (2)

掌骨:

掌骨 (5 * 2)

指骨:

近节指骨 (5 * 2)

中节指骨 (4 * 2)

远节指骨 (5 * 2)

骨盆 (4):

15. 髋骨 (hip bones or innominate bones) (2)

16. 骶骨

尾骨

腿骨 (8):

18. 股骨 (2)

17. 股骨头

22. 大转子

23. 大腿骨节

19. 髌骨 (2)

20. 胫骨的轴部和 24. 骨节 (2)

21. 腓骨 (2)

足部 (52):

踝骨:

跟骨 (2)

距骨 (2)

足舟骨 (2)

内侧楔骨 (2)

中间楔骨 (2)

外侧楔骨 (2)

骰骨 (2)

足背骨:

跖骨 (5 * 2)

趾骨:

近节趾骨 (5 * 2)

中节趾骨 (4 * 2)

远节趾骨 (5 * 2)

幼儿骨骼还包括下面这些骨骼:

骶椎 (4 或 5), 成年后融合为骶骨

尾椎 (3 到 5), 成年后融合为尾骨

髂骨, 坐骨和耻骨, 成年后融合成整体的髋骨

3.我想知道一些人体骨骼的知识

人体骨骼中所包含的组织:

1.结缔组织 硬骨、软骨、纤维性结缔组织、血管、血液。

2.神经组织

@骨骼的功用 支持、保护、运动、造血〈红骨髓〉、储存脂质

〈黄骨髓〉及矿物质。

@骨骼的种类: 长骨、短骨、扁平骨、不规则骨、圆骨〈种子骨〉

1.长骨----肱骨、股骨〈长比宽=非常大〉

2.短骨----腕骨〈长比宽=非常小,近似立方形〉

3.扁平骨----肩胛骨〈板状〉

4.不规则骨----脊柱骨

5.圆骨〈种子骨〉----膑骨〈通常很小,位于关节内层〉

骨骼的大体解剖:中轴骨骼、四肢骨骼

中轴骨骼--头骨---颅顶骨----额骨、顶骨、枕骨、颞骨、蝶骨、筛骨。

颜面骨----上颚骨、下颚骨、颧骨、鼻骨、腭骨、

涙骨、犁骨、下鼻甲。

---舌骨(1)

---听小骨(6)

--脊柱---颈椎、胸椎、腰椎、荐椎、尾椎。

--胸骨

--肋骨

各部重点:1.枕骨 (1)由项平面的鳞部不成对部份:成对的外侧质块和不成对的

基底部组成。

(2)枕骨大孔为颅腔和脊椎管之交通所在。

(3)舌下神经管。

2. 颞骨 外侧只看到鳞状部。颧骨的颞突+颞骨的颧突=形成下颔枝部

的关节(颞颚关节)及颧骨弓

3. 蝶骨 大翼小翼之间是一三角形裂缝称眶上裂,有动眼神经(3)、

滑车神经(4)、外展神经(6)及三叉神经的眼支(第一支)通过。

大翼上有三孔,由上而下分别为:圆孔(三叉第二支通过)、

卵圆孔(三叉第三支通过)、棘孔。

4. 筛骨 (1)可区分为外侧质块、垂直板及筛板。

(2)由筛板向上的一三角形突起称为鸡冠,为脑膜附著点。

5. 上颚骨 上颚骨及蝶骨间有一裂缝称眶下裂

6. 下颚骨 (1)髁状突和颞骨的下颚窝及关节结节形成关节,称为颞颚关节(可动)。

(2)下颚舌骨线为下颚舌骨肌起始。

(3)头骨中唯一可动。

7. 胸骨 胸骨柄、胸骨体、剑突。

4.关于骨骼的一些知识有哪些

骨傲是一种不断变化着的活组织。

与身体的需求相适应的是,骨 重构的过程正在不断进行着。某些时候,钙元素从骨骼中游离出来以 补充血液中钙的浓度。

如果骨骼中的钙经常游离出来的话,会导致骨 髂脆弱,尤其是当你的饮食中钙含量过低和过着喜欢久坐的生活方式 的时候。 而当人们经常做负重运动和食用富含钙质的食物的时候,血 液中的钙便会不断沉积到骨骼中去,使骨骼更加致密更加强健。

钙是一种矿物质,它可以使骨骼和牙齿更加坚固,并且在缓解肌 肉痉挛、维持心脏正常功能、神经冲动的传导以及血液凝固中起着重 要的作用。体内有很多腺体可以调节和稳定血液中钙的浓度,维持着 钙质在骨骼和血液中的平衡。

雌激素在保护骨骼强度中起了重要的作用。在更年期的时候雌激 素浓度下降,骨髂的分解比骨骼的再韩化的速度更快,因此从骨骼中大约35岁后,女性的骨骼强度和密度逐渐开始降低。

随着更年期的到 来,女性雌激素下降,骨强度和骨密度的下降速度变得更快。当女性的骨 密度已经降低到接近更年期的水平的时候,就存在骨质丢失性骨折的风 险,除非她使用雌激素或者其他重构骨骼的药物。

游离出来的钙比沉积的钙更多。这些变化导致骨豁变得更脆弱、更容 易发生骨折。

骨质疏松症可能会很疼痛甚至致残。更年期后,女性发生骨折的概 率大大增加,只要轻微的摔跤或者突然的扭伤也许就骨折了。

在女性 60~69岁时,因为脊椎骨的骨质不断丢失也许会引起背痛,最终会导致 严重的脊椎骨的压迫。 女性也许会因为跌跤发生腕骨骨折。

最严重的骨 骼问题主要发生在70岁以后,那时有可能发生股骨骨折和髋部骨折。骨 折康复后即使没有疼痛,但行走能力也会永远地受到限制。

髋部骨折可 能需要髋部固定手术、住院以及依赖轮椅或者拐杖行走。髋部骨折也可 能导致残疾,外科手术和固定术的死亡率不断增高。

骨质疏松症引起的畸形在某些女性中非常明显。患较严重的骨质 疏松症的老年女性,会出现身高萎缩、驼背、腹部突出以及步态不稳等。

这是因为脊椎骨的骨密度降低,椎骨塌陷压迫肋骨向骨盆方向倾 斜,脊柱发生畸形,把内脏器官往外推动。因为脊柱的压迫作用,患 有骨质疏松症的女性的身高能减少20厘米。

当骨质疏松症达到晚期的时候,患者会感觉不舒服甚至可能残疾, 也会发现衣服不合身而感觉尴尬。日常的生活例如购物会变得非常困难。

5.人体骨骼的分布常识

骨骼的分类 人体所有的骨骼,从形状和大小上各不相同,有的较大,如胫骨、肱骨等,有的则很小,如趾骨等。

从形状上大致可分为5种:长骨、短骨、扁骨、不规则骨和含气骨。扁平状的骨起保护内脏器官的作用,比如颅骨保护大脑等;棒状骨负责人体运动,例如四肢的骨骼等。

脊椎骨是由颈部至臀部贯穿身体中央的骨,由上而下,依序是颈椎(7个)、胸椎(12个)、腰椎(5个)、骶骨、尾骨。脊椎骨上有可从外部触摸得到的凸骨,这是找穴道时的重要依据。

骨骼疾病1 中老年人:腰酸背痛、腿脚酸痛、抽筋、手脚麻木、骨质增生、颈椎病、肩周炎、关节炎、下肢痛、四肢乏力、脱发,牙根松动等骨质疏松症状。2 孕妇:腰酸背痛,疲乏无力,抽筋,牙齿松动,手足麻木,妊娠高血压,妊娠斑,胎儿发育不良,生育困难,贫血。

3 青少年儿童:个子不高、盗汗、精力不集中、青春期个子长不快、梦多、记忆力不好、生长痛等。 骨骼营养五要点 要点1:保持体重适中 。

骨密度的积累在青春期达到顶峰,如果年轻时盲目节食减肥,那么日后沉重的代价将是年老时轻易骨折以致卧床不起。因为标准体重指数低于正常的人士,骨质流失以及骨折的几率比正常人明显增加。

要点2:补充钙质。钙质是骨骼组织的主要结构性要素。

当人体血液中的钙浓度下降,体内的甲状旁腺素会随即升高,引致钙质从骨中流走,因此,人体必须保持摄取适量的钙质。 要点3:补充维生素D。

维生素D是保持骨质健康的重要元素,其来源主要经阳光照射皮肤产生,或从食物中吸收。 要点4:补充蛋白质。

蛋白质是维持骨质健康的重要元素。研究显示,蛋白质摄入量增加可增进造骨细胞的功能;蛋白质吸收较多的成年人比吸收较少者,股骨及脊椎骨的骨质流失率较低。

另外,氨基酸能增强肠道吸收钙质的能力。

6.人体骨骼的知识

人体共有206块骨骼,分为颅骨、躯干和四肢3个大部分。

它们分布在全身各部位,支撑着身体,保护内部器官,同时由肌肉帮忙,进行各种活动。假如没有了骨骼,人体就成了一堆肉,还能做什么呢? 人体所有的骨骼,从形状和大小上各不相同,有的较大,如胫骨、肱骨等,有的则很小,如趾骨等。

从形状上大致可分为5种:长骨、短骨、扁骨、不规则骨和含气骨。扁平状的骨起保护内脏器官的作用,比如颅骨保护大脑等;棒状骨负责人体运动,例如四肢的骨骼等。

脊椎骨是由颈部至臀部贯穿身体中央的骨,由上而下,依序是颈椎(7个)、胸椎(12个)、腰椎(5个)、骶骨、尾骨。脊椎骨上有可从外部触摸得到的凸骨,这是找穴道时的重要依据。

7.骨头的相关知识

骨头可能被撞伤吗?是的,骨头可能被撞伤。

遭受一次猛烈撞击,或者不慎摔倒,有时会引起骨膜下出血。骨膜是一种纤维膜,覆盖在大多数骨头的表面,其中有血管和神经。

骨头被撞伤会引起疼痛,但是通常在几天内就痊愈。如果疼痛持续,或者活动受限制,应该去看医生,可能需要作X射线检查,以确定是否有骨折。

什么叫做有创骨折?什么叫做无创骨折?骨折因严重受伤而起,可能是摔倒或受到猛击所致。骨头裂开或折断,而周围组织无严重损伤,皮肤也没有破损,称为无创骨折。

周围组织广泛受损,折断的骨头或穿透邻近组织,凸出于皮肤之外,称为有创骨折。有创骨折的伤者易受感染,在大多数情况下需要接受外科手术治疗。

若是轻微骨折,只要休息,也许再加上夹板或悬带,伤处就会自行愈合。万一伤势比较严重,得把断裂的骨片接上。

断骨接好后,必须停止活动,可以敷上石膏,采用牵引装置,或使用固定针、固定板,固定骨位。所谓脱位?是什么原因引起的?如何治疗?骨头离开了在关节内的正常位置,称为脱位,通常是遭受猛力打击或韧带撕裂所致;韧带是把骨头系于适当位置的组织,受到损伤就可能撕裂。

脱位通常是在运动中相互碰撞引起的,几乎可发生于任何一个关节。症状为剧痛、关节迅速肿胀、皮肤变色、无法活动,此时关节看上去变了形。

要治愈脱位,必须由医生将骨头复位,然后尽可能加以固定。肌腱和韧带有什么不同?肌腱是坚韧的带状结缔组织,薄而结实,把肌肉系在骨上,并带动它们。

韧带也是坚韧的带状结缔组织,弹性较肌腱强,把相邻的骨头连在一起,保持在适当位置。活动范围超过极限或拉扯过剧,韧带和肌腱都会受损。

腱炎是一种什么病?该怎么治疗?腱炎是身体里许多肌腱中的某—根发炎,起因包括肌腱过劳、肌腱受伤,或者肌肉绷得太紧,以致在休息时也扯紧肌腱。通常连滑液鞘也发炎,滑液鞘的作用是保护肌腱,并且使肌腱在骨头和关节表面易于滑动。

若滑液鞘也发炎,就称为腱鞘炎。凡肌腱连接肌肉和骨头处。

都可以患上腱炎,最常见于腕、肘(网球家肘)、足跟、肩和膝。腱炎的症状为局部疼痛、肿胀和活动受到限制。

治疗的第一步是让患部休息。冰敷、服用阿斯匹林或异丁苯丙酸,可以帮助减轻疼痛和肿胀。

在较严重的情况下,医生会开处方药物。疼痛缓解后,下一步是防止肌腱僵硬;这得小心进行,否则会加重病情。

患者要做些缓慢而轻柔的伸展运动,在不引起疼痛的情况下,尽可能伸展患肢,每次维持姿势至少二十秒钟。重要的是不要让患部因不活动而变得僵硬。

如果在一周内疼痛和僵硬的情况没有改善,应请医生诊治。医学上何谓扭伤?扭伤和腱炎如何区别?扭伤是把骨头维系在一起的关节韧带部分撕裂,最常见于踝、膝以及手指关节,其他关节有时也会扭伤。

轻度扭伤的症状与腱炎有些相似,两者都有局部疼痛和触痛。腱炎的症状通常变化缓慢,在发病的数天里,患部或许还能短暂负重,只是会因得不到休息而病情加重。

扭伤几乎总是由直接损伤立即引起的,伤处往往在短期内丧失功能,通常伴有青肿,需要较长时间才能痊愈。若严重扭伤,韧带完全撕裂,必须立即加以护理,可能需要几个月才能复原。

运动后的翌晨为什么有时会感到肌肉酸痛?很可能是准备活动不足、运动过度或是这次运动之前已许久没做运动。运动时肌肉收缩,可能使肌纤维拉扯过度;停止运动后, 肌纤维就肿胀起来,数小时后开始僵硬发痛。

实际上,剧烈运动可轻微撕裂肌纤维,休息期间肌纤维肿胀,那是康复过程的一部分。扯伤了肌肉和下肌断裂如何区分?肌肉被扯伤和肌肉断裂,一般都是用力过度所致,但是两 者有显著区别。

肌肉被过度拉扯,尤其是突然过分拉扯,某些肌纤维会撕裂,引起疼痛、肿胀和无力,称为肌肉扯伤,这是 运动员在没有充分做好准备动作时常见的损伤,一般很快痊愈。肌肉整条或部分脱离骨头,称为肌断裂。

伤处肌肉无力,可能需动手术来修补断裂的肌肉。扯伤了腿部肌肉,如何减轻疼痛?扯伤了肌肉,首先应该停止引起损伤的活动,然后抬高伤腿,施以冰敷,以防止肿胀。

疼痛通常会在几天内消退,伤者应让肌肉休息至疼痛消失为止。如果疼痛和肿胀严重,应该去看医生。

受伤后必须走动的话,应该包扎腿部伤处以助支撑体重,或者使用拐杖,以免加剧损伤。严重扯伤的肌肉痊愈后,不可立即恢复日常活动,应先接受物理治疗伸展肌肉加强肌肉力量。

鞭打式颈伤是怎么回事?可以治愈吗?鞭打式颈伤通常见于汽车事故,是头部猛地向前甩,随即又向后猛甩所造成的。伤处疼痛和僵硬,有时持续一段很长时间,情况严重的可引起脊髓断裂,导致四肢麻醉,甚至死亡。

这种颈伤最常见的是颈椎周围的肌肉和韧带被撕裂或扯伤。损伤需要几个星期才可治愈,期间伤者必须戴上特制的颈圈。

损伤治愈后,肌肉的痉挛和疼痛仍可能持续一段日子。休息、适当热敷和 *** 有助于缓解疼痛和僵硬。

在某些情况下,服用止痛药和肌肉松弛剂也是有用的,但是靠这些药物可能产生赖药性。情绪紧张看来不利于康复,这可能是头部肌肉不能脱离紧张状态的缘故,所以伤者在疗伤、康复期间,应。

8.关于骨头的科学知识有哪些

人体的每一个部位都要靠骨头来支撑,骨头的形态也多种多样,人体一共有206块骨头,分为颅骨、躯干和四肢3个大部分。

它们分布在全身各个部位,支撑着身体,保护身体的内部器官。人体所有的骨头,从形状和大小上各不相同。

从大小上来说,有的比较大,如腿上的胫骨、肱骨等,有的很小,如脚上的趾骨等。从形状上,大致可分为5种:长骨、短骨、扁骨、不规则骨和含气骨。

扁平状的骨起保护内脏器官的作用,比如大脑内的颅骨能保护大脑;棒状骨支配人体的 运动,比如四肢的骨头。脊椎骨是由颈部到臀部贯穿身体中央的骨头,由上而下,依序是颈 椎、胸椎、腰椎、骶骨、尾骨。

脊椎骨上有棘突,可以从外面触摸得到, 这是找穴道时的重要依据。所以说,人体的骨骼是一个大的容器,将人体的主要内脏器官和神经 中枢都保护起来。

骨骼也是一个大的支架,肌肉只有附着在骨骼上才能通 过收缩使身体进行运动。比如,在呼吸系统中和肺的呼吸运动,正是由胸腔骨骼的运动产生的动力才能保证这些器官的正常工作。

9.骨头科学知识

相关知识骨(bone)主要由骨组织(包括骨细胞、胶原纤维和基质等)构成,成人有206块骨。

骨有新陈代谢活动和生长发育过程,外伤后有修复再生能力,所以骨是一种器官。按其在体内的部位可分为躯干骨、颅骨和四肢骨。

前二者统称为中轴骨,四肢骨包括上肢骨和下肢骨。组织结构骨组织(osseous tissue)由数种细胞成分和大量钙化的细胞间质组成。

骨的形态形态和功能是互相制约的,由于功能的不同,骨有不同的形态。基本可分为四类:长骨、短骨、扁骨和不规则骨。

1 长骨long bone呈长管状,分布于四肢,适应支持体重、移动身体和进行劳动的运动,在运动中起杠杆作用。长骨有一体和两端。

体又名骨干,骨质致密,骨干内的空腔称为骨髓腔,内含骨髓;在体的一定部位有血管出入的滋养孔。端又名骺,较膨大并具有光滑的关节面,由关节软骨覆盖。

小儿长骨的骨干与骺之间夹有一层 软骨,称骺软骨。骺软骨能不断增生,又不断骨化,使骨的长度增长。

成年后骺软骨骨化,原骺软骨处留有一线状痕迹,称骺线。2 短骨short bone一般呈立方形,多成群地连接存在,位于既承受重量又运动复杂的部位,如腕骨和跗骨。

3 扁骨(falt bone)呈板状,分布于头、胸等处。常构成骨性腔的壁,对腔内器官有保护作用,如颅盖骨保护脑,胸骨和肋骨保护心肺等。

4 不规则骨 irregular bone 形态不规则,如椎骨。有些不规则骨,内有含气的腔,称含气骨,如位于鼻腔周围的上颌骨和筛骨等,发音时能起共鸣作用,并能减轻骨的重量。

骨基质骨的钙化细胞间质又称骨基质(bone matrix),由有机骨成分和无机成分构成。 (l)有机成分:包括胶原纤维和无定形基质,约占骨干重的35%,是由骨细胞分泌形成的。

有机成分的95%是胶原纤维(骨胶纤维),主要由I型胶原蛋白构成,还有少量V型胶原蛋白。无定形基质的含量只占5%,呈凝胶状,化学成分为糖胺多糖和蛋白质的复合物。

糖胺多糖包括硫酸软骨素、硫酸角质素和透明质酸等。而蛋白质成分中有些具有特殊作用,如骨粘连蛋白可将骨的无机成分与骨胶原蛋白结合起来;而骨钙蛋白(osteocalcin)是与钙结合的蛋白质,其作用与骨的钙化及钙的运输有关。

有机成分使骨具有韧性。(2)无机成分:主要为钙盐,又称骨盐(bone salt),约占骨干重的65%。

主要成分是羟基磷灰石结晶[hydroxyapatite crystal,Ca10(PO4)6(OH)2],电镜下,结晶体为细针状,长约10~20nm,它们紧密而有规律地沿着胶原纤维的长轴排列。骨盐一旦与有机成分结合后,骨基质则十分坚硬,以适应其支持功能。

成熟骨组织的骨基质均以骨板的形式存在,即胶原纤维平行排列成层并借无定形基质粘合在一起,其上有骨盐沉积,形成薄板状结构,称为骨板(bone lamella)。同一层骨板内的胶原纤维平行排列,相邻两层骨板内的纤维方向互相垂直,如同多层木质胶合板一样,这种结构形式,能承受多方压力,增强了骨的支持力。

由骨板逐层排列而成的骨组织称为板层骨。成人的骨组织几乎都是板层骨。

按照骨板的排列形式和空间结构不同而分为骨松质和骨密质。骨松质构成扁骨的板障和长骨骨骺的大部分;骨密质构成扁骨的皮质、长骨骨干的大部分和骨髓的表层。

细胞成分骨组织的细胞成分包括骨祖细胞、成骨细胞、骨细胞和破骨细胞。只有骨细胞存在于骨组织内,其他三种细胞均位于骨组织的边缘。

(1)骨细胞(osteocyte):骨细胞为扁椭圆形多突起的细胞,核亦扁圆、染色深。胞质弱嗜碱性。

电镜下,胞质内有少量溶酶体、线粒体和粗面内质网,高尔基复合体亦不发达。骨细胞夹在相邻两层骨板间或分散排列于骨板内。

相邻骨细胞的突起之间有缝隙连接。在骨基质中,骨细胞胞体所占据的椭圆形小腔,称为骨陷窝(bone lacun),其突起所在的空间称骨小管(bone c *** iculi)。

相邻的骨陷窝借骨小管彼此通连。骨陷窝和骨小管内均含有组织液,骨细胞从中(2)骨祖细胞(osteoprogenitor cell):骨原细胞是骨组织中的干细胞。

细胞呈梭形,胞体小,核卵圆形,胞质少呈弱嗜碱性。骨原细胞存在于骨外膜及骨内膜的内层及中央管内,靠近骨基质面。

在骨的生长发育时期,或成年后骨的改建或骨组织修复过程中,它可分裂增殖并分化为成骨细胞。(3)成骨细胞(osteoblast):成骨细胞由骨原细胞分化而来,比骨原细胞体大,呈矮柱状或立方形,并带有小突起。

核大而圆、核仁清楚。胞质嗜碱性,含有丰富的碱性磷酸酶。

电镜下,胞质内有大量的粗面内质网、游离核糖体和发达的高尔基复合体,线粒体亦较多。当骨生长和再生时,成骨细胞于骨组织表面排列成规则的一层,并向周围分泌基质和纤维,将自身包理于其中,形成类骨质(osteoid),有骨盐沉积后则变为骨组织,成骨细胞则成熟为骨细胞。

成骨细胞以顶质分泌的方式向类骨质内释放有膜包裹的小泡,称为基质小泡(matrix vesicle),其直径约 0.1μm。小泡膜上有大量的碱性磷酸酶和ATP酶,泡内含有磷脂和小的钙盐结晶。

通常认为,基质小泡是类骨质钙化的重要结构。医学研究认为,成骨细胞能向基质中分泌骨钙蛋白。

(4)破骨细胞(osteoclast):破骨细胞是一种多核的大细胞,直径可达100μm。

人体的干细胞总数是多少,占人体细胞的百分比是多少

人饥猜体的干细胞总数是多少.

人体干细胞是指未成熟细胞,它未充分分化,具有再生各种组织器官和人体的潜在功能.人体干细胞分三种类型,一种是全能干细胞,可分化出完整的生物个体,比如可用于克隆人体;第二种是多能干细胞,可分化出多种组织和器官,可用于复制各种脏器和修复组织,第三种是专能干细胞,如骨髓中的造血干细胞,补充血液中的各种细胞.人体中各种细胞的生命周期也不相同:1.肝细胞的寿命:5个月2.味蕾细胞寿命:10天3.大脑的寿命:和寿命相同(英国巴特与伦敦医院的神经外科专家约翰•瓦德莱指出:“我们的脑细胞约有1000亿个,出生时数量已固定,我们大脑的大部分不会随老化而自我更新.”)4.心脏细胞寿命:20年5.肺细胞的寿命:2到3周6.眼睛饥肢差细胞的寿命:和你的寿命相同(眼睛是身体中为数较少的在你的生命期间不会改变的身体部分之一.眼部唯一不断更新的部位是角膜.)7.皮肤细胞寿命:2到4周8.骨骼细胞寿命:10年9.肠细胞烂皮的寿命:2到3天10.指甲细胞的寿命:6到10个月11.红血球寿命:4个月12.头发的寿命:3到6年

人体有多少血液?有多少骨髓?这些在人体有什么用?

人体内的血液量大约是体重的7~8%,如体重60公斤,则血液量约4200~4800毫升。 ①运输。 ②参与体液调节。 ③嫌敏保持内环境稳态。 ④防御功能。 ⑤调节体温。 每隔六个月献一次是比较好的,对生体也有一定的好处,能促进血液循环.每次最好献200CC,身体好的话每次可以献400CC. 成年人骨髓量一般为3千克左右。 人体内的血液成分处于一种不断的新陈代谢中,老的细胞被清除,生成新的细胞,骨髓的重要功能就是产生生成各种细胞的干细胞,这些干细胞通过分化再生成各种血细胞如红细胞、白细胞、血小板、淋巴细胞等,简单的说骨髓的作知者游用就是造血功能。因此,骨髓对于维持机体的生命和免疫力非常重要。 采集总共大约10克的造血干细胞。含部分血液成搭销分,一般是50~100毫升。

每个成年人人体内有多少“成体原始多能干细胞” ?

成年人没有的,只有胚胎发育过程中才可以。

干细胞是指未分化或分化度极低,能生成各种组织器官的起源细胞。

干细胞的原意是树干或起源,类似于一棵树干可以长出树杈,树叶,开花,结果。

干细胞大致可以分为3种类型:胚胎干细胞,组织干细胞和专能干细胞。

胚胎干细胞又称全能干细胞.是从哺乳动物早期胚胎中分离培养出来的。特点是具有发育的全能性,可以参加整个生物体的发育,构成人体的各种组织和器官.受精卵便是一个最初始的全能干细胞。

全能干细胞是指受精卵到卵裂期32细胞前的所有细胞。胚胎干细胞在进一步的分化中,可形成各种组织干细胞,又称多能干细胞.它具有分化出多种细胞组织的潜能,但不能发育成完整的个体。多能干细胞取自囊胚,原肠胚期。多能干细胞进一步分化,可形成专能干细胞.专能干细胞只能分化成某一类型的细胞。原肠胚以后的干细胞只能是专能干细胞了,如某些肝脏细胞,骨髓造血干细胞 。所以脐带或者成人骨髓中的都已经是专能干细胞了,即纯体外培养只能分裂分化出特定的组织细胞,如骨髓只能分裂出各种血细胞。动物细胞的胞核的确都有全能性,注意和干细胞的区别,如高度分化完了的细胞也有全能性,但不是干细胞,但不是说克隆就能克隆的,必须在离体条件有一系列的刺激诱导,而且现在的克隆还离不开卵细胞胞质的诱导作用,即必须进行核移植。

总之,分化度越高,全能性表达越困难,克隆成功的可能性越小。最新的研究还发现,干细胞不但能再生某些组织,而且可以衍生成与其来源不同的细胞类型.正是由于人的胚胎干细胞培养成功和组织干细胞对人类健康的潜在价值,因而引发了世界范围内的干细胞研究热。

有关干细胞

细胞简介

英文名:CELL 在文章中简称C

细胞是由膜包围着含有细胞核(或拟核)的原生质所组成, 是生物体的结构和功能的基本单位, 也是生命活动的基本单位。细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。细胞或是独立的作为生命单位, 或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性。

除病毒外的所有生物,都由细胞构成。自然界中既有单细胞生物,也有多细胞生物。细胞是生物体基本的结构和功能单位。细胞是生物界中,不可缺的一部分。

细胞的结构

在光学显微镜下 观察植物的细胞,可以看到它的结构分为下列四个部分

细胞壁

位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。

细胞膜

让卖细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。

细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中,或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分型滑轿子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。

细胞质

细胞膜包着的黏稠透明的物质,叫做细胞质。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。

细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细胞内,细胞质往往围绕液泡循环流动,这样便促进了细胞内物质的转运,也加强了细胞器之间的相互联系。细胞质运动是一种消耗能量的生命现象。细胞的生命活动越旺盛,细胞质流动越快,反之,则越慢。细胞死亡后,其细胞质的流动也就停止了。

除叶绿体外,植物细胞中还有一些细胞器,它们具有不同的结构,执行着不同的功能,共同完成细胞的生命活动。这些细胞器的结构需用电子显微镜观察。在电镜下观察到的细胞结构称为亚显微结构。

线粒体

呈线状、粒状,故名。在线粒体上,有很多种与呼吸作用有关的颗粒,即多种呼吸酶。它是细胞进行呼吸作用的场所,通过呼吸作用,将有机物氧化分解,并释放能量,供细胞的生命活动所需,所以有人称线粒体为细胞的“发电站”或“动力工厂”。

叶绿体

叶绿体是绿色植物细胞中重要的细胞器,其主要功能是进行光合作用。叶绿体由双层膜、类囊体和基质三部分构成。类囊体是一种扁平的小囊状结构,在类囊体薄膜上,有进行光合作用必需的色素和酶。许多类囊体叠合而成基粒。基粒之间充满着基质,其中含有与光合作用有关的酶。基质中还含有DNA。

内质网

内质网是细胞质中由膜构成的网状管道系统广泛的分布在细胞质基质内。它与细胞膜相通连,对细胞内蛋白质等物质的合成和运输起着重要作用。

内质网有两种:一种是表面光滑的;另一种是上面附着许多小颗粒状的。内质网增大了细胞内的膜面积,膜上附着这许多酶,为细胞内各种化学反应的正常进行提供了有利条件。

高尔基体

高尔基体普遍存在于植物细胞和动物细胞中。一般认为,细胞中的高尔基体与细胞分泌物的形成有关,高尔基体本身没有合成蛋白质的功能,但可以对蛋白质进行加工和卜肆转运。植物细胞分裂时,高尔基体与细胞壁的形成有关。

核糖体

核糖体是椭球形的粒状小体,有些附着在内质网膜的外表面,有些游离在细胞质基质中,是合成蛋白质的重要基地。

中心体

中心体存在于动物细胞和某些低等植物细胞中,因为它的位置靠近细胞核,所以叫中心体。每个中心体由两个互相垂直排列的中心粒及其周围的物质组成。 动物细胞的中心体与丝分裂有密切关系。

液泡

液泡是植物细胞中的泡状结构。成熟的植物细胞中的液泡很大,可占整个细胞体积的90%。

液泡的表面有液泡膜。液泡内有细胞液,其中含有糖类、无机盐、色素和蛋白质等物质,可以达到很高的浓度。因此,它对细胞内的环境起着调节作用,可以使细胞保持一定的渗透压,保持膨胀的状态。

溶酶体 溶酶体是细胞内具有单层膜囊状结构的细胞器。其内含有很多种水解酶类,能够分解很多物质。

细胞核 细胞质里含有一个近似球形的细胞核,是由更加黏稠的物质构成的。细胞核通常位于细胞的中央,成熟的植物细胞的细胞核,往往被中央液泡推挤到细胞的边缘。细胞核中有一种物质,易被洋红、苏木精等碱性染料染成深色,叫做染色质。生物体用于传种接代的物质即遗传物质,就在染色质上。当细胞进行有丝分裂时,染色质就变化成染色体。

多数细胞只有一个细胞核,有些细胞含有两个或多个细胞核,如肌细胞、肝细胞等。细胞核可分为核膜、染色质、核液和核仁四部分。核膜与内质网相通连,染色质位于核膜与核仁之间。染色质主要由蛋白质和DNA组成。DNA是一种有机物大分子,又叫脱氧核糖核酸,是生物的遗传物质。在有丝分裂时,染色体复制,DNA也随之复制为两份,平均分配到两个子细胞中,使得后代细胞染色体数目恒定,从而保证了后代遗传特性的稳定。

还有RNA,RNA是DNA在复制时的单链,它传递蛋白质,被称为DNA的信使。

由膜包围着含有细胞核(或拟核)的原生质所组成, 是生物体的结构和功能的基本单位, 也是生命活动的基本单位。细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。细胞或是独立的作为生命单位, 或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性(植物)

动物细胞核有全能性

细胞学是研究细胞结构和功能的生物学分支学科。

细胞是组成有机体的形态和功能的基本单位,自身又是由许多部分构成的。所以关于细胞结构的研究不仅要知道它是由哪些部分构成的,而且要进一步搞清每个部分的组成。相应地,关于功能不仅要知道细胞作为一个整体的功能,而且要了解各个部分在功能上的相互关系。

有机体的生理功能和一切生命现象都是以细胞为基础表达的。因此,不论对有机体的遗传、发育以及生理机能的了解,还是对于作为医疗基础的病理学、药理学等以及农业的育种等,细胞学都至关重要。

绝大多数细胞都非常微小,超出人的视力极限,观察细胞必须用显微镜。所以1677年列文·虎克用自己制造的简单显微镜观察到动物的“精虫”时,并不知道这是一个细胞。细胞一词是1665年罗伯特·胡克在观察软木塞的切片时看到软木中含有一个个小室而以之命名的。其实这些小室并不是活的结构,而是细胞壁所构成的空隙,但细胞这个名词就此被沿用下来。

在细胞学的启蒙时期,用简单显微镜虽然也观察到许多细小的物体——例如细菌、纤毛虫等,但目的主要是观察一些发育现象,例如蝴蝶的变态,精子和卵子的结构等。直到1827年贝尔发现哺乳类的卵子,才开始对细胞本身进行认真的观察。在这前后研制出的无色差物镜,引进洋红和苏木精作为使细胞核着色的染料以及切片机和切片技术的初创,都为对细胞进行更精细的观察创造了有利条件。

对于研究细胞起了巨大推动作用的是德国生物学家施莱登和施旺。前者在1838年描述了细胞是在一种粘液状的母质中,经过一种像是结晶样的过程产生的,并且把植物看作细胞的共同体。在他的启发下施万坚信动、植物都是由细胞构成的,并指出二者在结构和生长中的一致性,于1839年提出了细胞学说。

与此同时,捷克动物生理学家浦肯野提出原生质的概念;德国动物学家西博尔德断定原生动物都是单细胞的。德国病理学家菲尔肖在研究结缔组织的基础上提出“一切细胞来自细胞”的名言,并且创立了细胞病理学。

从19世纪中期到20世纪初,关于细胞结构尤其是细胞核的研究,有了长足的进展。德国植物学家施特拉斯布格1875年首先叙述了植物细胞中的着色物体,而且断定同种植物各自有一定数目的着色物体;1880年巴拉涅茨基描述了着色物体的螺旋状结构,翌年普菲茨纳发现了染色粒,直到1888年瓦尔代尔才把核中的着色物体正式命名为染色体。德国学者亨金1891年在昆虫的精细胞中观察到 X染色体,1902年史蒂文斯、威尔逊等发观了 Y染色体。

德国植物学家霍夫迈斯特1867年对植物,施奈德1873年对动物,分别比较详细地叙述了间接分裂;德国细胞学家弗勒明1882年在发现了染色体的纵分裂之后提出了有丝分裂这一名称以代替间接分裂,霍伊泽尔描述了在间接分裂时的染色体分布;在他之后,施特拉斯布格把有丝分裂划分为直到现在还通用的前期、中期、后期、末期;他和其他学者还在植物中观察到减数分裂,经过进一步研究终于区别出单倍体和双倍体染色体数目。

对细胞质结构的认识落后于对细胞核或染色体的认识,这种情况长期末得到改善。尤其是20世纪早期之后,随着细胞遗传学研究分离、重组、连锁、交换等遗传现象的染色体基础,对染色体的了解更深入了。但是与此同时,关于细胞质,除去结合着细胞生理对它的某些生理功能有所了解之外,对结构的认识并没有多大进展。这种情况直至20世纪40年代后,电子显微镜得到广泛使用,标本的包埋、切片一套技术逐渐完善,才有了很大改变。

1900年重新发现孟德尔的研究成就后,遗传学研究有力地推动了细胞学的进展。美国遗传学家和胚胎学家摩尔根研究果蝇的遗传,发现偶尔出现的白眼个体总是雄性;结合已有的、关于性染色体的知识,解释了白眼雄性的出现,开始从细胞解释遗传现象,遗传因子可能位于染色体上。细胞学和遗传学联系起来,从遗传学得到定量的和生理的概念,从细胞学得到定性的、物质的和叙述的概念,逐步产生出细胞遗传学。

1920年美国细胞学家萨顿进一步指出遗传因子和染色体行为间的平行现象,必然意味着遗传因子位于染色体上,并且提到,如果两对因子位于同一染色体上,它们可能按照,也可能不按照孟德尔规律遗传,预示了连锁的概念,加深了关于成熟分裂尤其是关于染色体配对、染色体交换的研究。

此外,发现了辐射现象、温度能够引起果蝇突变之后,因突变的频率很高更有利于染色体的实验研究。辐射之后引起的各种突变,包括基因的移位、倒位及缺失等都司在染色体中找到依据。利用突变型与野生型杂交,并且对其后代进行统计处理可以推算出染色体的基因排列图。广泛开展的性染色体形态的研究,也为雌雄性别的决定找到细胞学的基础。

在20世纪40年代初期,其他学科的技术方法相继被用于细胞学的研究,开辟了新的局面,形成了一些新的领域。首先是电子显微镜的应用产生了超显微形态学。

比利时动物学家布拉谢从胚胎学的问题出发,利用专一的染色方法研究核酸在发育中的,意义。差不多与此同时,瑞典生化学家卡斯珀松根据各种物质对一定波长的吸收,创建了紫外线细胞分光光度计,来检测蛋白质、DNA和RNA这些物质在细胞中的存在。他们的工作引起人们对核酸在细胞生长和分化中的作用的重视。在他们工作的基础上发展起了细胞化学,研究细胞的化学组成,可以和形态学的研究相互补充,对细胞结构增加一些了解。

20世纪40年代开始逐渐开展了从生化方面研究细胞各部分的功能的工作,产生了生化细胞学。首先使用了匀浆——在适合的溶液中把细胞机械地磨碎——和差速离心的办法,除细胞核而外还可以得到线粒体、微粒体和透明质等几部分。对它们分别地进行研究了解到一些物质和酶的存在和分布以及某些代谢过程在什么部位进行。关于线粒体和微粒体这样的一些研究指出,许多基本的生化过程是在细胞质而不是在细胞核里进行的。这样的方法结合着深入的形态学研究导致对细胞中的过程有越来越深刻的了解。

虽然在20世纪30年代组织培养就有了较大的发展,但是只能培养组织块,还不能培养正常组织的单个细胞,而且还没有充分显示出它的重要性。利用培养的细胞可以研究许多在整体中无法研究的问题,例如细胞的营养、运动、行为、细胞问的相互关系等。几乎各种组织,包括某些无脊椎动物,都被培养过。

在良好的培养条件下从组织块长出的各种细胞,其生长情况不同。从形态上基本上可以分为三种类型,上皮、结缔组织和游走细胞。有时候培养细胞会显示正常组织在有机体中表现不出的特征,例如如果培养基中含有增强表面活性的物质,多种组织的细胞可以获得吞噬的能力。但是它们仍保持特有的性质和潜能,因为如果改变培养环境或者移回到动物体内原来的部位便仍可照原样生长。

值得一提的是在培养中的成纤维细胞的生长也受底质的影响。在一般情况下它们呈辐射状、漫无目的地从组织块长出。但是如果人工地使培养基处于一定方向的张力之下,或人工的在底质上制出痕迹,细胞就会沿张力的方向或沿着痕迹生长出去。这个现象也许可以用来解释在整体中结缔钼织和肌腱的功能适应——它们总是在张力的方向生长、分化。

可以看出对于细胞的研究,在使用电子显微镜后在亚显微结构方面的深入,以及在应用生化技术后在功能方面的深入,已经在为细胞生物学——在分子水平上研究细胞的生命现象——的形成创造了条件。所以在后来,在分子遗传学和分子生物学优异的成就的影响之下,细胞生物学这一新的学科很快地形成了。

一般细胞都很微小,只有在显微镜下才能看清它们的面貌。一般骨骼肌细胞长达1-40毫米.但是,也有长达1米以上的细胞。

神经解剖学家发现,在哺乳类动物的神经系统中,有些专管运动功能的神经元(也就是神经细胞),它的突起部分可以长达1米以上。它们的细胞体位于大脑皮层或脊髓灰质中,但它们的突起末端却可伸到很远的地方。位于大脑皮质的叫做锥体细胞,这种细胞有个很长的突起叫轴突。轴突是用来传递信息的通道,大脑下达的运动指令就是沿着这条线通过脑干到达脊髓。脊髓中接受大脑皮质下达指令的细胞叫脊髓前角运动神经元,它也有一个很长的轴突,这个轴突穿出锥管,沿着脊神经直达所支配的肌肉,将大脑的运动指令转变成肌肉运动的信号,肌肉就安大脑的意图运动。

细胞的结构与功能相一致。大脑皮层到脊髓、脊髓到肌肉的距离都很长,建立距离这么远的两部分之间联系的神经细胞必然有特定的结构,因而具有那样长的突起。而且,动物的个体越大,它的运动神经元也就越长。

动物细胞与植物细胞相比较,具有很多相似的地方,如动物细胞也具有细胞膜、细胞质、细胞核等结构。但是动物细胞与植物细胞又有一些重要的区别,如动物细胞的最外面是细胞膜,没有细胞壁;动物细胞的细胞质中不含叶绿体,也不形成中央液泡(图3-1-4)。

总之,不论是植物还是动物,都是由细胞构成的。细胞是生物体结构和功能的基本单位。

人体细胞

1. 人体最大的细胞是成熟的卵细胞(直径0.1毫米)。

2. 人体最小的细胞是淋巴细胞(直径6微米)。

3. 人体寿命最长的细胞是神经细胞。

4. 人体寿命最短的细胞是白细胞。

细胞的化学成分

组成细胞的基本元素是:O、C、H、N、Si、K、Ca、P、Mg,其中O、C、H、N四种元素占90%以上。细胞化学物质可分为两大类:无机物和有机物。在无机物中水是最主要的成分,约占细胞物质总含量的75%—80%。

一、水与无机盐

(一)水是原生质最基本的物质

水在细胞中不仅含量最大,而且由于它具有一些特有的物理化学属性,使其在生命起源和形成细胞有序结构方面起着关键的作用。可以说,没有水,就不会有生命。水在细胞中以两种形式存在:一种是游离水,约占95%;另一种是结合水,通过氢键或其他键同蛋白质结合,约占4%~5%。随着细胞的生长和衰老,细胞的含水量逐渐下降,但是活细胞的含水量不会低于75%。

水在细胞中的主要作用是,溶解无机物、调节温度、参加酶反应、参与物质代谢和形成细胞有序结构。水之所以具有这么多的重要功能是和水的特有属性分不开的。

1.水分子是偶极子

从化学结构上看,水分子似乎很简单,仅是由2个氢原子和1个氧原子构成(H2O)。然而水分子中的电荷分布是不对称的,一侧显正电性,另一侧显负电性,从而表现出电极性,是一个典型的偶极子(图3-31)。正由于水分子具有这一特性,它既可以同蛋白质中的正电荷结合,也可以同负电荷结合。蛋白质中每一个氨基酸平均可结合2.6个水分子。

由于水分子具有极性,产生静电作用,因而它是一些离子物质(如无机盐)的良好溶剂。

2.水分子间可形成氢键

由于水分子是偶极子,因而在水分子之间和水分子与其他极性分子间可建立弱作用力的氢键。在水中每一氧原子可与另两个水分子的氢原子形成两个氢键。氢键作用力很弱,因此分子间的氢键经常处于断开和重建的过程中。

3.水分子可解离为离子

水分子可解离为氢氧离子(OH-)和氢离子(H+)。在标准状况下总有少量水分子解离为离子,大约有107mol/L水分子解离,相当于每109个水分子中就有2个解离。但是水分子的电解并不稳定,总是处于分子与离子相互转化的动态平衡之中。

(二)无机盐

细胞中无机盐的含量很少,约占细胞总重的1%。盐在细胞中解离为离子,离子的浓度除了具有调节渗透压和维持酸碱平衡的作用外,还有许多重要的作用。

主要的阴离子有Cl—、PO4—和HCO3—,其中磷酸根离子在细胞代谢活动中最为重要:①在各类细胞的能量代谢中起着关键作用;②是核苷酸、磷脂、磷蛋白和磷酸化糖的组成成分;③调节酸碱平衡,对血液和组织液pH起缓冲作用。

主要的阳离子有:Na+、K+、Ca2+、Mg2+、Fe2+、Fe3+、Mn2+、Cu2+、Co2+、Mo2+。

二、细胞的有机分子

细胞中有机物达几千种之多,约占细胞干重的90%以上,它们主要由碳、氢、氧、氮等元素组成。有机物中主要由四大类分子所组成,即蛋白质、核酸、脂类和糖,这些分子约占细胞干重的90%以上。

(一)蛋白质

在生命活动中,蛋白质是一类极为重要的大分子,几乎各种生命活动无不与蛋白质的存在有关。蛋白质不仅是细胞的主要结构成分,而且更重要的是,生物专有的催化剂——酶是蛋白质,因此细胞的代谢活动离不开蛋白质。一个细胞中约含有104种蛋白质,分子的数量达1011个。

(二)核酸

核酸是生物遗传信息的载体分子,所有生物均含有核酸。核酸是由核苷酸单体聚合而成的大分子。核酸可分为核糖核酸RNA和脱氧核糖核酸两大类DNA。当温度上升到一定高度时,DNA双链即解离为单链,称为变性(denaturation)或熔解(melting),这一温度称为熔解温度(melting temperature,Tm)。碱基组成不同的DNA,熔解温度不一样,含G—C对(3条氢键)多的DNA,Tm高;含A—T对(2条氢键)多的,Tm低。当温度下降到一定温度以下,变性DNA的互补单链又可通过在配对碱基间形成氢键,恢复DNA的双螺旋结构,这一过程称为复性(renaturation)或退火(annealing)。

DNA有三种主要构象

B-DNA:为WatsonClick提出的右手螺旋模型,每圈螺旋10个碱基,螺旋扭角为36度,螺距34A,每个碱基对的螺旋上升值为3.4A,碱基倾角为-2度。

A-DNA:为右手螺旋,每圈螺旋10.9个碱基,螺旋扭角为33度,螺距32A,每个碱基对的螺旋上升值为2.9A,碱基倾角为13度。

Z-DNA:为左手螺旋,每圈螺旋12个碱基,螺旋扭角为-51度(G—C)和-9度(C—G),螺距46A,每个碱基对的螺旋上升值为3.5A(G—C)和4.1A(C—G),碱基倾角为9度。

(三)糖类

细胞中的糖类既有单糖,也有多糖。细胞中的单糖是作为能源以及与糖有关的化合物的原料存在。重要的单糖为五碳糖(戊糖)和六碳糖(己糖),其中最主要的五碳糖为核糖,最重要的六碳糖为葡萄糖。葡萄糖不仅是能量代谢的关键单糖,而且是构成多糖的主要单体。

多糖在细胞结构成分中占有主要的地位。细胞中的多糖基本上可分为两类:一类是营养储备多糖;另一类是结构多糖。作为食物储备的多糖主要有两种,在植物细胞中为淀粉(starch),在动物细胞中为糖原(glycogen)。在真核细胞中结构多糖主要有纤维素(cellulose)和几丁质(chitin)。

(四)脂类

脂类包括:脂肪酸、中性脂肪、类固醇、蜡、磷酸甘油酯、鞘脂、糖脂、类胡萝卜素等。脂类化合物难溶于水,而易溶于非极性有机溶剂。

1、中性脂肪(neutral fat)

①甘油酯:它是脂肪酸的羧基同甘油的羟基结合形成的甘油三酯(triglyceride)。甘油酯是动物和植物体内脂肪的主要贮存形式。当体内碳水化合物、蛋白质或脂类过剩时,即可转变成甘油酯贮存起来。甘油酯为能源物质,氧化时可比糖或蛋白质释放出高两倍的能量。营养缺乏时,就要动用甘油酯提供能量。

②蜡:脂肪酸同乙醇酯化形成蜡(如蜂蜡)。蜡的碳氢链很长,熔点要高于甘油酯。细胞中不含蜡质,但有的细胞可分泌蜡质。如:植物表皮细胞分泌的蜡膜;同翅目昆虫的蜡腺、如高等动物外耳道的耵聍腺。

2、磷脂

磷脂对细胞的结构和代谢至关重要,它是构成生物膜的基本成分,也是许多代谢途径的参与者。分为甘油磷脂和鞘磷脂两大类。

3、糖脂

糖脂也是构成细胞膜的成分,与细胞的识别和表面抗原性有关。

4、萜类和类固醇类

这两类化合物都是异戊二烯(isoptene)的衍生物,都不含脂肪酸。

生物中主要的萜类化合物有胡萝卜素和维生素A、E、K等。还有一种多萜醇磷酸酯,它是细胞质中糖基转移酶的载体。

类固醇类(steroids)化合物又称甾类化合物,其中胆固醇是构成膜的成分。另一些甾类化合物是激素类,如雌性激素、雄性激素、肾上腺激素等。

三、酶与生物催化剂

(一)酶

酶是蛋白质性的催化剂,主要作用是降低化学反应的活化能,增加了反应物分子越过活化能屏障和完成反应的概率。酶的作用机制是,在反应中酶与底物暂时结合,形成了酶——底物活化复合物。这种复合物对活化能的需求量低,因而在单位时间内复合物分子越过活化能屏障的数量就比单纯分子要多。反应完成后,酶分子迅即从酶——底物复合物中解脱出来。

酶的主要特点是:具有高效催化能力、高度特异性和可调性;要求适宜的pH和温度;只催化热力学允许的反应,对正负反应的均具有催化能力,实质上是能加速反应达到平衡的速度。

某些酶需要有一种非蛋白质性的辅因子(cofactor)结合才能具有活性。辅因子可以是一种复杂的有机分子,也可以是一种金属离子,或者二者兼有。完全的蛋白质——辅因子复合物称为全酶(holoenzyme)。全酶去掉辅因子,剩下的蛋白质部分称为脱辅基酶蛋白(apoenzyme)。

(二)RNA催化剂

T.Cech 1982发现四膜虫(Tetrahymena)rRNA的前体物能在没有任何蛋白质参与下进行自我加工,产生成熟的rRNA产物。这种加工方式称为自我剪接(self splicing)。后来又发现,这种剪下来的RNA内含子序列像酶一样,也具有催化活性。此RNA序列长约400个核苷酸,可褶叠成表面复杂的结构。它也能与另一RNA分子结合,将其在一定位点切割开,因而将这种具有催化活性的RNA序列称为核酶Ribozyme。后来陆续发现,具有催化活性的RNA不只存在于四膜虫,而是普遍存在于原核和真核生物中。一个典型的例子核糖体的肽基转移酶,过去一直认为催化肽链合成的是核糖体中蛋白质的作用,但事实上具有肽基转移酶活性和催化形成肽键的成分是RNA,而不是蛋白质,核糖体中的蛋白质只起支架作用。

发表评论

评论列表

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~